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Min CorreLation CLusTERING is NP-hard [Bansal - Blum - Chawla, 2004].
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Valued constraint languages

Let D be a fixed set (called domain).

A cost function over D is a function f: D" — Q U {+o0}, for n € N.
Here f(x) = +co is interpreted as: f not defined on x.

Valued (constraint) language: a set I' of cost functions over D.

Example (Valued language for Min CorRreLATION CLUSTERING)
I = {f;, &) where f;, f,: Q> — {0, 1} and

0 x= 1 x=
f1(X’y):{ 1 X;tyy fZ(va):{ 0 Xi}}//



Instances of VCSPs

Definition
An instance [ of the valued constraint satisfaction problem for I', VCSP(I"),
consists of

m a finite set of variables V,

m an expression ¢ of the form

m
20 X)
i=

where fi,...,f, € [ and all the xl." are variables from V, and

m avalue ue QU {+oo}.



Instances of VCSPs

Definition
An instance [ of the valued constraint satisfaction problem for I', VCSP(I"),
consists of

m a finite set of variables V,

m an expression ¢ of the form

m

Zf,-(x{,...,x;r(,i))

i=1
where fi,...,f, € [ and all the xl." are variables from V, and

m avalue ue QU {+oo}.
Task: decide whether there exists a map @: V — D whose cost

m
D (@(K), - a(Xiyyy)
i=1

is finite, and if so, whether there is one whose cost is smaller than or equal to u.



Finite domain VCSPs

Theorem (Kolmogorov-Krokhin-Rolinek, 2015 + Bulatov-Zhuk, 2017)

The VCSP for a finite set of cost functions over a finite domain is either
polynomial-time solvable or NP-hard.
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Finite domain VCSPs

Theorem (Kolmogorov-Krokhin-Rolinek, 2015 + Bulatov-Zhuk, 2017)

The VCSP for a finite set of cost functions over a finite domain is either
polynomial-time solvable or NP-hard.

This talk is about infinite domain VCSPs.
e.g.:

m MiNn CorreLATION CLUSTERING,
m LINEAR PROGRAMMING.

We will focus on a very natural class of infinite domain VCSPs.
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A class of infinite domain VCSPs

A function is piecewise linear homogeneous (PLH) if it is first-order
definable over (Q; <, 1, (¢)ceq), Where c- denotes the map x — cx.

A language I is PLH if every member of I is a PLH cost function.

Example (Binary PLH function)

2y ifx>0
f(x,y)=4 0 ifx<OAy=>3
-3y ifx<0Ay<3.
———

“case distinctions”

Observation: every finite domain VCSP is equivalent to a PLH VCSP.
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Representing PLH cost functions
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(@5 <,1,(c")ceq) admits quantifier elimination.
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Representing PLH cost functions

Lemma (Bodirsky-Mamino-V.,2018)

(@5 <,1,(c")ceq) admits quantifier elimination.
Consequence: every PLH cost function can be written in the form
a1X + By xi(x.y)
f(x.y) = : :
ax+py  xi(xy)

where «; - 8; = 0, and yi(x, ¥) is a conjunction of atomic formulas, for all i.

Every atomic formula is equivalent to either
BC X C-y,or

mcC-Xx“c-1,0r
mc-1cy,

for some ¢; € Q.
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From a PLH VCSP to a finite domain VCSP: sampling

y

Observation: The representation of PLH cost functions suggests a
“valued sampling approach”.
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Sampling

A: a structure with a finite relational signature 7.

Definition
A sampling algorithm for 2 takes as input a positive integer d and

computes a finite structure B s.t. for every conjunction of r-atomic
formulas, y, having at most d distinct free variables,

x is satisfiable in A < y is satisfiable in B.



Sampling

A: a structure with a finite relational signature 7.
Definition
A sampling algorithm for 2 takes as input a positive integer d and

computes a finite structure B s.t. for every conjunction of r-atomic
formulas, y, having at most d distinct free variables,

x is satisfiable in A < y is satisfiable in B.

A sampling algorithm is efficient if its running time is bounded by a
polynomial in d.
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and find such an efficient sampling for PLH VCSPs.
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Towards a valued sampling algorithm

We will adapt the sampling technique to “valued sampling” for VCSPs
and find such an efficient sampling for PLH VCSPs.

Problems:
m the regions of linearity need not be closed, in general;
m the regions of linearity need not be bounded, in general;
m the sample might have super-polynomial size.
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The standard trick of non-standard analysis

We interpret our cost functions in a new domain:

+00
Q* = {Z a€ | a; € Q, and a; # 0 for only finitely many negative values of i}

i=—00

m the ring operations on Q* are defined, as usual, componentwise;
m the order is the lexicographic one induced by 0 < € << 1.

Remark: Q* is a ordered field containing Q.

For all m < n we define the vector space

Qpn = {Zn: aj€ ' a € Q}

11/15



An efficient sampling for PLH cost functions

Theorem (Bodirsky-Mamino-V., 2018)

Let d(xy,..., Xq) be a set of atomic PLH formulas. Let u, aq, ..., ag € Q.

12/15



An efficient sampling for PLH cost functions

Theorem (Bodirsky-Mamino-V., 2018)

Let d(xy,...,Xq) be a set of atomic PLH formulas. Let u, a1,
Then there exists a finite
C c QY 4

...,ag €Q.

12/15



An efficient sampling for PLH cost functions

Theorem (Bodirsky-Mamino-V., 2018)

Let d(xy,...,Xq) be a set of atomic PLH formulas. Let u, a1,
Then there exists a finite

C c QY 4
such that TFAE:

the formulas in ® are simultaneously satisfiable in Q by a point
(X1,...,X4) €Q9s.t. Y aixi < u

the formulas in ® are simultaneously satisfiable in Q* by a point
(Xf,....x;) e C¥st. Jaix! < u.

...,CZdGQ.

12/15



An efficient sampling for PLH cost functions

Theorem (Bodirsky-Mamino-V., 2018)

Let ®(xi,...,Xq) be a set of atomic PLH formulas. Let u, a1, ...,aq € Q.

Then there exists a finite
CcQy,

such that TFAE:

the formulas in ® are simultaneously satisfiable in Q by a point
(X1,...,X4) €Q9s.t. Y aixi < u

the formulas in ® are simultaneously satisfiable in Q* by a point
(Xf,....x;) e C¥st. Jaix! < u.
Remarks:

m |C] is polynomial in the size of the instance;

12/15



An efficient sampling for PLH cost functions

Theorem (Bodirsky-Mamino-V., 2018)

Let ®(xi,...,Xq) be a set of atomic PLH formulas. Let u, a1, ...,aq € Q.
Then there exists a finite

C c QY 4
such that TFAE:

the formulas in ® are simultaneously satisfiable in Q by a point
(X1,...,X4) €Q9s.t. Y aixi < u

the formulas in ® are simultaneously satisfiable in Q* by a point
(Xf,....x;) e C¥st. Jaix! < u.
Remarks:

m |C] is polynomial in the size of the instance;
m C is computable in polynomial time.

12/15



An efficient sampling for PLH cost functions

Theorem (Bodirsky-Mamino-V., 2018)

Let ®(xi,...,Xq) be a set of atomic PLH formulas. Let u, a1, ...,aq € Q.
Then there exists a finite

C c QY 4
such that TFAE:

the formulas in ® are simultaneously satisfiable in Q by a point
(X1,...,X4) €Q9s.t. Y aixi < u

the formulas in ® are simultaneously satisfiable in Q* by a point
(Xf,....x;) e C¥st. Jaix! < u.

Remarks:
m |C] is polynomial in the size of the instance;
m C is computable in polynomial time.

Consequence: there exists an efficient “valued sampling algorithm” for
valued PLH languages.
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Submodular PLH VCSPs
A function f: Q" — QU {+oo} is submodular if, for all x, y € Q"
f(x) + f(y) =

where min and max are applied componentwise.
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Submodular PLH VCSPs
A function f: Q" — QU {+oo} is submodular if, for all x, y € Q"

f(x) +1f(y) >

where min and max are applied componentwise.

Y2

)4

X4 X2
A language [ is submodular if every element of I is submodular.

Theorem (Bodirsky-Mamino-V., 2018)

Let I be a finite language of submodular PLH cost functions. Then
VCSP(I') is solvable in polynomial-time.
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Maximal tractability

Let V be a class of valued constraint languages over a fixed domain D
and let I be a language of V, I is maximally tractable within <V if

m VCSP(I') € P for every finite sublanguage I'" c T'; and

m for every f € V such that f ¢ I', there exists a finite sublanguage
A C T such that VCSP(A U {f}) is NP-hard.
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Maximal tractability

Let V be a class of valued constraint languages over a fixed domain D
and let I be a language of V, I is maximally tractable within <V if

m VCSP(I') € P for every finite sublanguage I'" c T'; and

m for every f € V such that f ¢ I', there exists a finite sublanguage
A C T such that VCSP(A U {f}) is NP-hard.

Theorem (Bodirsky-Mamino-V., 2018)

The valued language consisting of all submodular PLH cost functions is
maximally tractable within the class of PLH valued languages.

14/15
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Two possibilities:
interpret our PLH functions in the domain Q*,
substitute a suitably small rational value of € in the formal expression
of C and map the problem to Q.

In the first case we have to transfer the known approaches for Q to the
new domain Q*.
In the second case we can use them (after having computed a suitable €).

For submodular PLH VCSPs we chose the first way.

Thank you

15/15



