
Piecewise linear homogeneous valued
constraint satisfaction problems

Caterina Viola
joint work with Manuel Bodirsky and Marcello Mamino

TU Dresden
Institute for Algebra

Logic Colloquium 2018 - Udine
July 23-28, 2018

Example of (infinite domain) VCSP: Min Correlation Clustering
You are organising a big dinner party for all your facebook friends, V .

You can use an arbitrary number of tables each labelled with a color.

Friends: two people that are friends on facebook (solid);

Unfollowed: two people that unfollowed each other on facebook (dashed).

Task: assign a table to each person in such a way to minimise the sum of

the number of friends that are not at the same table;

the number of unfollowed that are at the same table.

Cost of this assignment=4

Min Correlation Clustering is NP-hard [Bansal - Blum - Chawla, 2004].

2 / 15

Example of (infinite domain) VCSP: Min Correlation Clustering
You are organising a big dinner party for all your facebook friends, V .

You can use an arbitrary number of tables each labelled with a color.

Friends: two people that are friends on facebook (solid);

Unfollowed: two people that unfollowed each other on facebook (dashed).

Task: assign a table to each person in such a way to minimise the sum of

the number of friends that are not at the same table;

the number of unfollowed that are at the same table.

Cost of this assignment=4

Min Correlation Clustering is NP-hard [Bansal - Blum - Chawla, 2004].

2 / 15

Example of (infinite domain) VCSP: Min Correlation Clustering
You are organising a big dinner party for all your facebook friends, V .

You can use an arbitrary number of tables each labelled with a color.

Friends: two people that are friends on facebook (solid);

Unfollowed: two people that unfollowed each other on facebook (dashed).

Task: assign a table to each person in such a way to minimise the sum of

the number of friends that are not at the same table;

the number of unfollowed that are at the same table.

Cost of this assignment=4

Min Correlation Clustering is NP-hard [Bansal - Blum - Chawla, 2004].

2 / 15

Example of (infinite domain) VCSP: Min Correlation Clustering
You are organising a big dinner party for all your facebook friends, V .

You can use an arbitrary number of tables each labelled with a color.

Friends: two people that are friends on facebook (solid);

Unfollowed: two people that unfollowed each other on facebook (dashed).

Task: assign a table to each person in such a way to minimise the sum of

the number of friends that are not at the same table;

the number of unfollowed that are at the same table.

Cost of this assignment=4

Min Correlation Clustering is NP-hard [Bansal - Blum - Chawla, 2004].

2 / 15

Valued constraint languages

Let D be a fixed set (called domain).

A cost function over D is a function f : Dn → Q ∪ {+∞}, for n ∈ N.

Here f(x) = +∞ is interpreted as: f not defined on x.

Valued (constraint) language: a set Γ of cost functions over D.

Example (Valued language for Min Correlation Clustering)

Γ = {f1, f2} where f1, f2 : Q2 → {0, 1} and

f1(x, y) =

{
0 x = y
1 x , y f2(x, y) =

{
1 x = y
0 x , y

3 / 15

Valued constraint languages

Let D be a fixed set (called domain).

A cost function over D is a function f : Dn → Q ∪ {+∞}, for n ∈ N.
Here f(x) = +∞ is interpreted as: f not defined on x.

Valued (constraint) language: a set Γ of cost functions over D.

Example (Valued language for Min Correlation Clustering)

Γ = {f1, f2} where f1, f2 : Q2 → {0, 1} and

f1(x, y) =

{
0 x = y
1 x , y f2(x, y) =

{
1 x = y
0 x , y

3 / 15

Valued constraint languages

Let D be a fixed set (called domain).

A cost function over D is a function f : Dn → Q ∪ {+∞}, for n ∈ N.
Here f(x) = +∞ is interpreted as: f not defined on x.

Valued (constraint) language: a set Γ of cost functions over D.

Example (Valued language for Min Correlation Clustering)

Γ = {f1, f2} where f1, f2 : Q2 → {0, 1} and

f1(x, y) =

{
0 x = y
1 x , y f2(x, y) =

{
1 x = y
0 x , y

3 / 15

Valued constraint languages

Let D be a fixed set (called domain).

A cost function over D is a function f : Dn → Q ∪ {+∞}, for n ∈ N.
Here f(x) = +∞ is interpreted as: f not defined on x.

Valued (constraint) language: a set Γ of cost functions over D.

Example (Valued language for Min Correlation Clustering)

Γ = {f1, f2} where f1, f2 : Q2 → {0, 1} and

f1(x, y) =

{
0 x = y
1 x , y f2(x, y) =

{
1 x = y
0 x , y

3 / 15

Instances of VCSPs

Definition
An instance I of the valued constraint satisfaction problem for Γ, VCSP(Γ),
consists of

a finite set of variables V ,

an expression φ of the form

m∑
i=1

fi(x i
1, . . . , x

i
ar(fi)

)

where f1, . . . , fm ∈ Γ and all the x i
j are variables from V , and

a value u ∈ Q ∪ {+∞}.

Task: decide whether there exists a map α : V → D whose cost

m∑
i=1

fΓ
i (α(x i

1), . . . , α(x i
ar(fi)

))

is finite, and if so, whether there is one whose cost is smaller than or equal to u.

4 / 15

Instances of VCSPs

Definition
An instance I of the valued constraint satisfaction problem for Γ, VCSP(Γ),
consists of

a finite set of variables V ,

an expression φ of the form

m∑
i=1

fi(x i
1, . . . , x

i
ar(fi)

)

where f1, . . . , fm ∈ Γ and all the x i
j are variables from V , and

a value u ∈ Q ∪ {+∞}.

Task: decide whether there exists a map α : V → D whose cost

m∑
i=1

fΓ
i (α(x i

1), . . . , α(x i
ar(fi)

))

is finite, and if so, whether there is one whose cost is smaller than or equal to u.

4 / 15

Finite domain VCSPs

Theorem (Kolmogorov-Krokhin-Rolinek, 2015 + Bulatov-Zhuk, 2017)

The VCSP for a finite set of cost functions over a finite domain is either
polynomial-time solvable or NP-hard.

This talk is about infinite domain VCSPs.

e.g.:

Min Correlation Clustering,

Linear Programming.

.

We will focus on a very natural class of infinite domain VCSPs.

5 / 15

Finite domain VCSPs

Theorem (Kolmogorov-Krokhin-Rolinek, 2015 + Bulatov-Zhuk, 2017)

The VCSP for a finite set of cost functions over a finite domain is either
polynomial-time solvable or NP-hard.

This talk is about infinite domain VCSPs.

e.g.:

Min Correlation Clustering,

Linear Programming.

.

We will focus on a very natural class of infinite domain VCSPs.

5 / 15

Finite domain VCSPs

Theorem (Kolmogorov-Krokhin-Rolinek, 2015 + Bulatov-Zhuk, 2017)

The VCSP for a finite set of cost functions over a finite domain is either
polynomial-time solvable or NP-hard.

This talk is about infinite domain VCSPs.

e.g.:

Min Correlation Clustering,

Linear Programming.

.

We will focus on a very natural class of infinite domain VCSPs.

5 / 15

A class of infinite domain VCSPs

A function is piecewise linear homogeneous (PLH) if it is first-order
definable over (Q;<, 1, (c·)c∈Q), where c· denotes the map x 7→ cx.

A language Γ is PLH if every member of Γ is a PLH cost function.

Example (Binary PLH function)

f(x, y) =

2y if x > 0
0 if x ≤ 0 ∧ y ≥ 3
−3y if x ≤ 0 ∧ y < 3︸ ︷︷ ︸

“case distinctions”

.

Observation: every finite domain VCSP is equivalent to a PLH VCSP.

6 / 15

A class of infinite domain VCSPs

A function is piecewise linear homogeneous (PLH) if it is first-order
definable over (Q;<, 1, (c·)c∈Q), where c· denotes the map x 7→ cx.

A language Γ is PLH if every member of Γ is a PLH cost function.

Example (Binary PLH function)

f(x, y) =

2y if x > 0
0 if x ≤ 0 ∧ y ≥ 3
−3y if x ≤ 0 ∧ y < 3︸ ︷︷ ︸

“case distinctions”

.

Observation: every finite domain VCSP is equivalent to a PLH VCSP.

6 / 15

A class of infinite domain VCSPs

A function is piecewise linear homogeneous (PLH) if it is first-order
definable over (Q;<, 1, (c·)c∈Q), where c· denotes the map x 7→ cx.

A language Γ is PLH if every member of Γ is a PLH cost function.

Example (Binary PLH function)

f(x, y) =

2y if x > 0
0 if x ≤ 0 ∧ y ≥ 3
−3y if x ≤ 0 ∧ y < 3︸ ︷︷ ︸

“case distinctions”

.

Observation: every finite domain VCSP is equivalent to a PLH VCSP.

6 / 15

A class of infinite domain VCSPs

A function is piecewise linear homogeneous (PLH) if it is first-order
definable over (Q;<, 1, (c·)c∈Q), where c· denotes the map x 7→ cx.

A language Γ is PLH if every member of Γ is a PLH cost function.

Example (Binary PLH function)

f(x, y) =

2y if x > 0
0 if x ≤ 0 ∧ y ≥ 3
−3y if x ≤ 0 ∧ y < 3︸ ︷︷ ︸

“case distinctions”

.

Observation: every finite domain VCSP is equivalent to a PLH VCSP.

6 / 15

Representing PLH cost functions

Lemma (Bodirsky-Mamino-V.,2018)

(Q;<, 1, (c·)c∈Q) admits quantifier elimination.

Consequence: every PLH cost function can be written in the form

f(x, y) =

α1x + β1y χ1(x, y)

...
...

αlx + βly χl(x, y)

where αi · βi = 0,

and χi(x, y) is a conjunction of atomic formulas, for all i.

Every atomic formula is equivalent to either

c1 · x
<
= c2 · y, or

c1 · x
<
= c2 · 1, or

c1 · 1
<
= c2 · y,

for some ci ∈ Q.

7 / 15

Representing PLH cost functions

Lemma (Bodirsky-Mamino-V.,2018)

(Q;<, 1, (c·)c∈Q) admits quantifier elimination.

Consequence: every PLH cost function can be written in the form

f(x, y) =

α1x + β1y χ1(x, y)

...
...

αlx + βly χl(x, y)

where αi · βi = 0, and χi(x, y) is a conjunction of atomic formulas, for all i.

Every atomic formula is equivalent to either

c1 · x
<
= c2 · y, or

c1 · x
<
= c2 · 1, or

c1 · 1
<
= c2 · y,

for some ci ∈ Q.

7 / 15

Representing PLH cost functions

Lemma (Bodirsky-Mamino-V.,2018)

(Q;<, 1, (c·)c∈Q) admits quantifier elimination.

Consequence: every PLH cost function can be written in the form

f(x, y) =

α1x + β1y χ1(x, y)

...
...

αlx + βly χl(x, y)

where αi · βi = 0, and χi(x, y) is a conjunction of atomic formulas, for all i.

Every atomic formula is equivalent to either

c1 · x
<
= c2 · y, or

c1 · x
<
= c2 · 1, or

c1 · 1
<
= c2 · y,

for some ci ∈ Q.

7 / 15

From a PLH VCSP to a finite domain VCSP: sampling

x

y

Observation: The representation of PLH cost functions suggests a
“valued sampling approach”.

8 / 15

From a PLH VCSP to a finite domain VCSP: sampling

x

y

Observation: The representation of PLH cost functions suggests a
“valued sampling approach”.

8 / 15

From a PLH VCSP to a finite domain VCSP: sampling

x

y

Observation: The representation of PLH cost functions suggests a
“valued sampling approach”.

8 / 15

From a PLH VCSP to a finite domain VCSP: sampling

x

y

Observation: The representation of PLH cost functions suggests a
“valued sampling approach”.

8 / 15

From a PLH VCSP to a finite domain VCSP: sampling

x

y

Observation: The representation of PLH cost functions suggests a
“valued sampling approach”.

8 / 15

From a PLH VCSP to a finite domain VCSP: sampling

x

y

Observation: The representation of PLH cost functions suggests a
“valued sampling approach”.

8 / 15

Sampling

A: a structure with a finite relational signature τ.

Definition
A sampling algorithm for A takes as input a positive integer d and
computes a finite structure B s.t. for every conjunction of τ-atomic
formulas, χ, having at most d distinct free variables,

χ is satisfiable in A⇐⇒ χ is satisfiable in B.

A sampling algorithm is efficient if its running time is bounded by a
polynomial in d.

9 / 15

Sampling

A: a structure with a finite relational signature τ.

Definition
A sampling algorithm for A takes as input a positive integer d and
computes a finite structure B s.t. for every conjunction of τ-atomic
formulas, χ, having at most d distinct free variables,

χ is satisfiable in A⇐⇒ χ is satisfiable in B.

A sampling algorithm is efficient if its running time is bounded by a
polynomial in d.

9 / 15

Towards a valued sampling algorithm

We will adapt the sampling technique to “valued sampling” for VCSPs
and find such an efficient sampling for PLH VCSPs.

Problems:

the regions of linearity need not be closed, in general;

the regions of linearity need not be bounded, in general;

the sample might have super-polynomial size.

10 / 15

Towards a valued sampling algorithm

We will adapt the sampling technique to “valued sampling” for VCSPs
and find such an efficient sampling for PLH VCSPs.

Problems:

the regions of linearity need not be closed, in general;

the regions of linearity need not be bounded, in general;

the sample might have super-polynomial size.

10 / 15

Towards a valued sampling algorithm

We will adapt the sampling technique to “valued sampling” for VCSPs
and find such an efficient sampling for PLH VCSPs.

Problems:

the regions of linearity need not be closed, in general;

the regions of linearity need not be bounded, in general;

the sample might have super-polynomial size.

10 / 15

Towards a valued sampling algorithm

We will adapt the sampling technique to “valued sampling” for VCSPs
and find such an efficient sampling for PLH VCSPs.

Problems:

the regions of linearity need not be closed, in general;

the regions of linearity need not be bounded, in general;

the sample might have super-polynomial size.

10 / 15

The standard trick of non-standard analysis
We interpret our cost functions in a new domain:

Q? :=

 +∞∑
i=−∞

aiε
i
∣∣∣∣ ai ∈ Q, and ai , 0 for only finitely many negative values of i

the ring operations on Q? are defined, as usual, componentwise;

the order is the lexicographic one induced by 0 < ε << 1.

Remark: Q? is a ordered field containing Q.

For all m < n we define the vector space

Q?m,n :=

 n∑
i=m

aiε
i
∣∣∣∣ ai ∈ Q

11 / 15

The standard trick of non-standard analysis
We interpret our cost functions in a new domain:

Q? :=

 +∞∑
i=−∞

aiε
i
∣∣∣∣ ai ∈ Q, and ai , 0 for only finitely many negative values of i

the ring operations on Q? are defined, as usual, componentwise;

the order is the lexicographic one induced by 0 < ε << 1.

Remark: Q? is a ordered field containing Q.

For all m < n we define the vector space

Q?m,n :=

 n∑
i=m

aiε
i
∣∣∣∣ ai ∈ Q

11 / 15

The standard trick of non-standard analysis
We interpret our cost functions in a new domain:

Q? :=

 +∞∑
i=−∞

aiε
i
∣∣∣∣ ai ∈ Q, and ai , 0 for only finitely many negative values of i

the ring operations on Q? are defined, as usual, componentwise;

the order is the lexicographic one induced by 0 < ε << 1.

Remark: Q? is a ordered field containing Q.

For all m < n we define the vector space

Q?m,n :=

 n∑
i=m

aiε
i
∣∣∣∣ ai ∈ Q

11 / 15

The standard trick of non-standard analysis
We interpret our cost functions in a new domain:

Q? :=

 +∞∑
i=−∞

aiε
i
∣∣∣∣ ai ∈ Q, and ai , 0 for only finitely many negative values of i

the ring operations on Q? are defined, as usual, componentwise;

the order is the lexicographic one induced by 0 < ε << 1.

Remark: Q? is a ordered field containing Q.

For all m < n we define the vector space

Q?m,n :=

 n∑
i=m

aiε
i
∣∣∣∣ ai ∈ Q

11 / 15

The standard trick of non-standard analysis
We interpret our cost functions in a new domain:

Q? :=

 +∞∑
i=−∞

aiε
i
∣∣∣∣ ai ∈ Q, and ai , 0 for only finitely many negative values of i

the ring operations on Q? are defined, as usual, componentwise;

the order is the lexicographic one induced by 0 < ε << 1.

Remark: Q? is a ordered field containing Q.

For all m < n we define the vector space

Q?m,n :=

 n∑
i=m

aiε
i
∣∣∣∣ ai ∈ Q

11 / 15

An efficient sampling for PLH cost functions

Theorem (Bodirsky-Mamino-V., 2018)

Let Φ(x1, . . . , xd) be a set of atomic PLH formulas. Let u, α1, . . . , αd ∈ Q.

Then there exists a finite
C ⊂ Q?−1,4

such that TFAE:

1 the formulas in Φ are simultaneously satisfiable in Q by a point
(x1, . . . , xd) ∈ Qd s.t.

∑
αixi ≤ u

2 the formulas in Φ are simultaneously satisfiable in Q? by a point
(x′1, . . . , x

′
d) ∈ Cd s.t.

∑
αix′i ≤ u.

Remarks:

|C | is polynomial in the size of the instance;

C is computable in polynomial time.

Consequence: there exists an efficient “valued sampling algorithm” for
valued PLH languages.

12 / 15

An efficient sampling for PLH cost functions

Theorem (Bodirsky-Mamino-V., 2018)

Let Φ(x1, . . . , xd) be a set of atomic PLH formulas. Let u, α1, . . . , αd ∈ Q.
Then there exists a finite

C ⊂ Q?−1,4

such that TFAE:

1 the formulas in Φ are simultaneously satisfiable in Q by a point
(x1, . . . , xd) ∈ Qd s.t.

∑
αixi ≤ u

2 the formulas in Φ are simultaneously satisfiable in Q? by a point
(x′1, . . . , x

′
d) ∈ Cd s.t.

∑
αix′i ≤ u.

Remarks:

|C | is polynomial in the size of the instance;

C is computable in polynomial time.

Consequence: there exists an efficient “valued sampling algorithm” for
valued PLH languages.

12 / 15

An efficient sampling for PLH cost functions

Theorem (Bodirsky-Mamino-V., 2018)

Let Φ(x1, . . . , xd) be a set of atomic PLH formulas. Let u, α1, . . . , αd ∈ Q.
Then there exists a finite

C ⊂ Q?−1,4

such that TFAE:

1 the formulas in Φ are simultaneously satisfiable in Q by a point
(x1, . . . , xd) ∈ Qd s.t.

∑
αixi ≤ u

2 the formulas in Φ are simultaneously satisfiable in Q? by a point
(x′1, . . . , x

′
d) ∈ Cd s.t.

∑
αix′i ≤ u.

Remarks:

|C | is polynomial in the size of the instance;

C is computable in polynomial time.

Consequence: there exists an efficient “valued sampling algorithm” for
valued PLH languages.

12 / 15

An efficient sampling for PLH cost functions

Theorem (Bodirsky-Mamino-V., 2018)

Let Φ(x1, . . . , xd) be a set of atomic PLH formulas. Let u, α1, . . . , αd ∈ Q.
Then there exists a finite

C ⊂ Q?−1,4

such that TFAE:

1 the formulas in Φ are simultaneously satisfiable in Q by a point
(x1, . . . , xd) ∈ Qd s.t.

∑
αixi ≤ u

2 the formulas in Φ are simultaneously satisfiable in Q? by a point
(x′1, . . . , x

′
d) ∈ Cd s.t.

∑
αix′i ≤ u.

Remarks:

|C | is polynomial in the size of the instance;

C is computable in polynomial time.

Consequence: there exists an efficient “valued sampling algorithm” for
valued PLH languages.

12 / 15

An efficient sampling for PLH cost functions

Theorem (Bodirsky-Mamino-V., 2018)

Let Φ(x1, . . . , xd) be a set of atomic PLH formulas. Let u, α1, . . . , αd ∈ Q.
Then there exists a finite

C ⊂ Q?−1,4

such that TFAE:

1 the formulas in Φ are simultaneously satisfiable in Q by a point
(x1, . . . , xd) ∈ Qd s.t.

∑
αixi ≤ u

2 the formulas in Φ are simultaneously satisfiable in Q? by a point
(x′1, . . . , x

′
d) ∈ Cd s.t.

∑
αix′i ≤ u.

Remarks:

|C | is polynomial in the size of the instance;

C is computable in polynomial time.

Consequence: there exists an efficient “valued sampling algorithm” for
valued PLH languages.

12 / 15

An efficient sampling for PLH cost functions

Theorem (Bodirsky-Mamino-V., 2018)

Let Φ(x1, . . . , xd) be a set of atomic PLH formulas. Let u, α1, . . . , αd ∈ Q.
Then there exists a finite

C ⊂ Q?−1,4

such that TFAE:

1 the formulas in Φ are simultaneously satisfiable in Q by a point
(x1, . . . , xd) ∈ Qd s.t.

∑
αixi ≤ u

2 the formulas in Φ are simultaneously satisfiable in Q? by a point
(x′1, . . . , x

′
d) ∈ Cd s.t.

∑
αix′i ≤ u.

Remarks:

|C | is polynomial in the size of the instance;

C is computable in polynomial time.

Consequence: there exists an efficient “valued sampling algorithm” for
valued PLH languages.

12 / 15

Submodular PLH VCSPs

A function f : Qn → Q ∪ {+∞} is submodular if, for all x, y ∈ Qn

f(x) + f(y) ≥ f(min(x, y)) + f(max(x, y))

where min and max are applied componentwise.

y1

y2

x1 x2

A language Γ is submodular if every element of Γ is submodular.

Theorem (Bodirsky-Mamino-V., 2018)

Let Γ be a finite language of submodular PLH cost functions. Then
VCSP(Γ) is solvable in polynomial-time.

13 / 15

Submodular PLH VCSPs

A function f : Qn → Q ∪ {+∞} is submodular if, for all x, y ∈ Qn

f(x) + f(y) ≥ f(min(x, y)) + f(max(x, y))

where min and max are applied componentwise.

y1

y2

x1 x2

A language Γ is submodular if every element of Γ is submodular.

Theorem (Bodirsky-Mamino-V., 2018)

Let Γ be a finite language of submodular PLH cost functions. Then
VCSP(Γ) is solvable in polynomial-time.

13 / 15

Submodular PLH VCSPs

A function f : Qn → Q ∪ {+∞} is submodular if, for all x, y ∈ Qn

f(x) + f(y) ≥ f(min(x, y)) + f(max(x, y))

where min and max are applied componentwise.

y1

y2

x1 x2

A language Γ is submodular if every element of Γ is submodular.

Theorem (Bodirsky-Mamino-V., 2018)

Let Γ be a finite language of submodular PLH cost functions. Then
VCSP(Γ) is solvable in polynomial-time.

13 / 15

Maximal tractability

LetV be a class of valued constraint languages over a fixed domain D
and let Γ be a language ofV, Γ is maximally tractable withinV if

VCSP(Γ′) ∈ P for every finite sublanguage Γ′ ⊂ Γ; and

for every f ∈ V such that f < Γ, there exists a finite sublanguage
∆ ⊆ Γ such that VCSP(∆ ∪ {f }) is NP-hard.

Theorem (Bodirsky-Mamino-V., 2018)

The valued language consisting of all submodular PLH cost functions is
maximally tractable within the class of PLH valued languages.

14 / 15

Maximal tractability

LetV be a class of valued constraint languages over a fixed domain D
and let Γ be a language ofV, Γ is maximally tractable withinV if

VCSP(Γ′) ∈ P for every finite sublanguage Γ′ ⊂ Γ; and

for every f ∈ V such that f < Γ, there exists a finite sublanguage
∆ ⊆ Γ such that VCSP(∆ ∪ {f }) is NP-hard.

Theorem (Bodirsky-Mamino-V., 2018)

The valued language consisting of all submodular PLH cost functions is
maximally tractable within the class of PLH valued languages.

14 / 15

Q?

Two possibilities:

1 interpret our PLH functions in the domain Q?,
2 substitute a suitably small rational value of ε in the formal expression

of C and map the problem to Q.

In the first case we have to transfer the known approaches for Q to the
new domain Q?.
In the second case we can use them (after having computed a suitable ε).

For submodular PLH VCSPs we chose the first way.

Thank you

15 / 15

Q?

Two possibilities:
1 interpret our PLH functions in the domain Q?,

2 substitute a suitably small rational value of ε in the formal expression
of C and map the problem to Q.

In the first case we have to transfer the known approaches for Q to the
new domain Q?.
In the second case we can use them (after having computed a suitable ε).

For submodular PLH VCSPs we chose the first way.

Thank you

15 / 15

Q?

Two possibilities:
1 interpret our PLH functions in the domain Q?,
2 substitute a suitably small rational value of ε in the formal expression

of C and map the problem to Q.

In the first case we have to transfer the known approaches for Q to the
new domain Q?.
In the second case we can use them (after having computed a suitable ε).

For submodular PLH VCSPs we chose the first way.

Thank you

15 / 15

Q?

Two possibilities:
1 interpret our PLH functions in the domain Q?,
2 substitute a suitably small rational value of ε in the formal expression

of C and map the problem to Q.

In the first case we have to transfer the known approaches for Q to the
new domain Q?.
In the second case we can use them (after having computed a suitable ε).

For submodular PLH VCSPs we chose the first way.

Thank you

15 / 15

Q?

Two possibilities:
1 interpret our PLH functions in the domain Q?,
2 substitute a suitably small rational value of ε in the formal expression

of C and map the problem to Q.

In the first case we have to transfer the known approaches for Q to the
new domain Q?.
In the second case we can use them (after having computed a suitable ε).

For submodular PLH VCSPs we chose the first way.

Thank you

15 / 15

Q?

Two possibilities:
1 interpret our PLH functions in the domain Q?,
2 substitute a suitably small rational value of ε in the formal expression

of C and map the problem to Q.

In the first case we have to transfer the known approaches for Q to the
new domain Q?.
In the second case we can use them (after having computed a suitable ε).

For submodular PLH VCSPs we chose the first way.

Thank you
15 / 15

