A finitely supported frame for TSC

Eduardo Hermo Reyes Department of Philosophy - University of Barcelona

Logic Colloquium - 2018

・ロト ・日本 ・モート ・モート

Contents

1 Overview

- 2 Turing Progressions
 - Turing Progressions
 - Graded Turing Progressions
 - Some Principles

3 TSC

 Signature and Ordinal Modalities

- TSC
- 4 Universal Frame $\mathcal J$
 - Ignatiev sequences
 - J
 - Completeness
- Sequences with Finite Support
 - *H*
 - Completeness

イロン イヨン イヨン イヨン

Definability

Overview

Turing Progressions TSC Universal Frame ${\mathcal J}$ Sequences with Finite Support

Contents

1 Overview

- 2 Turing Progressions
 - Turing Progressions
 - Graded Turing
 - Progressions
 - Some Principles

3 TSC

 Signature and Ordinal Modalities

- TSC
- 4 Universal Frame $\mathcal J$
 - Ignatiev sequences
 - J
 - Completeness
- 5 Sequences with Finite Support
 - *H*
 - Completeness

イロト イヨト イヨト イヨト

Definability

 Turing Schmerl Calculus (TSC) is a modal system tailored to express the principles that hold between Turing progressions;

 Turing Schmerl Calculus (TSC) is a modal system tailored to express the principles that hold between Turing progressions;

イロト イヨト イヨト イヨト

Strictly positive signature with no variables;

 Turing Schmerl Calculus (TSC) is a modal system tailored to express the principles that hold between Turing progressions;

イロン イヨン イヨン イヨン

- Strictly positive signature with no variables;
- Inspired by RC, GLP;

- TSC is complete w.r.t. a natural arithmetical interpretation;
- TSC is complete w.r.t. a minor variation of Ignatiev Universal Frame *I*;

イロン イヨン イヨン イヨン

- TSC is complete w.r.t. a natural arithmetical interpretation;
- TSC is complete w.r.t. a minor variation of Ignatiev Universal Frame *I*;
 - Special sequences of ordinals;
 - A new universal frame \mathcal{H} that is based only in those sequences which have finite support.

イロト イヨト イヨト イヨト

Turing Progressions Graded Turing Progressions Some Principles

Contents

1 Overview

2 Turing Progressions

- Turing Progressions
- Graded Turing
 - Progressions
- Some Principles

3 TSC

 Signature and Ordinal Modalities

- TSC
- 4 Universal Frame $\mathcal J$
 - Ignatiev sequences
 - J
 - Completeness
- 5 Sequences with Finite Support
 - *H*
 - Completeness

イロト イヨト イヨト イヨト

Definability

Turing Progressions Graded Turing Progressions Some Principles

イロン イヨン イヨン イヨン

æ

Turing Progressions

By Gödel's second incompleteness theorem $T \not\vdash Con(T)$;

Turing Progressions Graded Turing Progressions Some Principles

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Turing Progressions

By Gödel's second incompleteness theorem $T \not\vdash Con(T)$;

T + Con(T)

Turing Progressions Graded Turing Progressions Some Principles

・ロン ・回と ・ヨン・

æ

Turing Progressions

- By Gödel's second incompleteness theorem $T \not\vdash Con(T)$;
- $T + \operatorname{Con}(T) \not\vdash \operatorname{Con}(T + \operatorname{Con}(T));$

Turing Progressions Graded Turing Progressions Some Principles

・ロト ・回ト ・ヨト ・ヨト

3

Turing Progressions

- By Gödel's second incompleteness theorem $T \not\vdash Con(T)$;
- $T + \operatorname{Con}(T) \not\vdash \operatorname{Con}(T + \operatorname{Con}(T));$
- $T + \operatorname{Con}(T) + \operatorname{Con}(T + \operatorname{Con}(T)) \dots$

Turing Progressions Graded Turing Progressions Some Principles

イロン イヨン イヨン イヨン

æ

Turing Progressions

T1.
$$T^0 := T$$
 where T is an initial theory;

T2.
$$T^{\alpha+1} := T^{\alpha} + \operatorname{Con}(T^{\alpha});$$

T3.
$$T^{\lambda} := \bigcup_{\beta \prec \lambda} T^{\beta}$$
, for λ a limit ordinal.

Turing Progressions Graded Turing Progressions Some Principles

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Graded Turing Progressions

GT1.
$$(T)_n^0 := T$$
 where T is an initial theory;

GT2.
$$(T)_n^{\alpha+1} := (T)_n^{\alpha} + \text{Con}_n((T)_n^{\alpha});$$

GT3. $(T)_n^{\lambda} := \bigcup_{\beta \prec \lambda} (T)_n^{\beta}$, for λ a limit ordinal.

Turing Progressions Graded Turing Progressions Some Principles

イロン イヨン イヨン イヨン

æ

Some principles

Some principles make use of ordinal arithmetic;

Turing Progressions Graded Turing Progressions Some Principles

イロト イヨト イヨト イヨト

- Some principles make use of ordinal arithmetic;
- Hyperexponential functions:

•
$$e^{0}(\alpha) = \alpha;$$

• $e^{1}(\alpha) = -1 + \omega^{\alpha};$
• $e^{n+m}(\alpha) = e^{n}(e^{m}(\alpha)).$

Turing Progressions Graded Turing Progressions Some Principles

・ロン ・回と ・ヨン ・ヨン

æ

- Monotonicity: $(T)_n^{\beta} \subseteq (T)_n^{\alpha}$ for $\beta \leq \alpha$;
- Additive Principle: $((T)_n^{\alpha})_n^{\beta} \equiv T_n^{\alpha+\beta}$;

Turing Progressions Graded Turing Progressions Some Principles

イロン イヨン イヨン イヨン

- Monotonicity: $(T)_n^{\beta} \subseteq (T)_n^{\alpha}$ for $\beta \leq \alpha$;
- Additive Principle: $((T)_n^{\alpha})_n^{\beta} \equiv T_n^{\alpha+\beta}$;
- **Reduction Property:** $(T)_{n+1}^{\alpha} \equiv_{\prod_{n+1}} (T)_n^{e^1(\alpha)}$;
- **Reduction Property**^{*}: $(T)_n^{e^1(\alpha)} \subseteq (T)_{n+1}^{\alpha}$;

Turing Progressions Graded Turing Progressions Some Principles

イロン イヨン イヨン イヨン

- Monotonicity: $(T)_n^{\beta} \subseteq (T)_n^{\alpha}$ for $\beta \leq \alpha$;
- Additive Principle: $((T)_n^{\alpha})_n^{\beta} \equiv T_n^{\alpha+\beta}$;
- **Reduction Property:** $(T)_{n+1}^{\alpha} \equiv_{\prod_{n+1}} (T)_n^{e^1(\alpha)};$
- **Reduction Property**^{*}: $(T)_n^{e^1(\alpha)} \subseteq (T)_{n+1}^{\alpha}$;
- Schmerl Principle: $((T)_{m+k}^{\alpha})_m^{\beta} \equiv_{\prod_{m+1}} (T)_m^{e^k(\alpha) \cdot (1+\beta)}$ $(\alpha > 0);$
- Schmerl Principle*: $((T)_{m+k}^{\alpha})_{m}^{\beta} \equiv (T)_{m}^{e^{k}(\alpha) \cdot (1+\beta)} + (T)_{m+k}^{\alpha}$ $(\alpha > 0).$

Signature and Ordinal Modalities TSC

Contents

1 Overview

- 2 Turing Progressions
 - Turing Progressions
 - Graded Turing
 - Progressions
 - Some Principles

3 TSC

 Signature and Ordinal Modalities

- TSC
- 4 Universal Frame $\mathcal J$
 - Ignatiev sequences
 - J
 - Completeness
- 5 Sequences with Finite Support
 - *H*
 - Completeness

イロト イヨト イヨト イヨト

Definability

Signature and Ordinal Modalities TSC

イロン イヨン イヨン イヨン

2

Signature and Ordinal Modalities

- Let Λ be a fixed recursive ordinal;
- Ordinal modalities: Modal connectives of the form ⟨ n^α ⟩ where n < ω and α < Λ.</p>

Signature and Ordinal Modalities TSC

イロン イヨン イヨン イヨン

2

Signature and Ordinal Modalities

- Let Λ be a fixed recursive ordinal;
- Ordinal modalities: Modal connectives of the form ⟨ n^α ⟩ where n < ω and α < Λ.</p>

$$\mathbb{F} ::= \top \mid (\varphi \land \psi) \mid \langle n^{\alpha} \rangle \varphi$$

IW's

Definition

The set of *increasing worms*, denoted by IW is inductively defined as follows:

Signature and Ordinal Modalities

(日) (同) (E) (E) (E)

```
i) \top \in IW;

ii) \langle n^{\alpha} \rangle \top \in IW for any n < \omega and \alpha, 0 < \alpha < \Lambda;

iii) if \langle n^{\alpha} \rangle A \in IW and m < n, then \langle m^{\beta} \rangle \langle n^{\alpha} \rangle A \in IW.
```

Signature and Ordinal Modalities TSC

イロン イ部ン イヨン イヨン 三日

IW's

Definition

Let $\langle n^{\alpha} \rangle A \in IW$, m < n and $\beta < \Lambda$. By $o_m^{\beta}(\langle n^{\alpha} \rangle A)$ we denote the *m*- β -ordinal of $\langle n^{\alpha} \rangle A$, that is recursively defined as follows: i) $o_m^{\beta}(\langle n^{\alpha} \rangle \top) = e^{n-m}(\alpha) \cdot (1+\beta);$ ii) $o_m^{\beta}(\langle n^{\alpha} \rangle A) = e^{n-m}(o_n^{\alpha}(A)) \cdot (1+\beta).$ For any $m < \omega$ and $\beta < \Lambda$, we set $o_m^{\beta}(\top)$ to be zero.

Signature and Ordinal Modalities TSC

イロン イ部ン イヨン イヨン 三日

IW's

Definition

Let $\langle n^{\alpha} \rangle A \in IW$, m < n and $\beta < \Lambda$. By $o_m^{\beta}(\langle n^{\alpha} \rangle A)$ we denote the *m*- β -ordinal of $\langle n^{\alpha} \rangle A$, that is recursively defined as follows: i) $o_m^{\beta}(\langle n^{\alpha} \rangle \top) = e^{n-m}(\alpha) \cdot (1+\beta);$ ii) $o_m^{\beta}(\langle n^{\alpha} \rangle A) = e^{n-m}(o_n^{\alpha}(A)) \cdot (1+\beta).$ For any $m < \omega$ and $\beta < \Lambda$, we set $o_m^{\beta}(\top)$ to be zero.

Schmerl Principle:
$$((T)_{m+k}^{\alpha})_{m}^{\beta} \equiv_{\Pi_{m+1}} (T)_{m}^{e^{k}(\alpha) \cdot (1+\beta)} (\alpha > 0)$$

Signature and Ordinal Modalities TSC

æ

TSC Axioms

1
$$\varphi \vdash \varphi, \quad \varphi \vdash \top;$$

2 $\varphi \land \psi \vdash \varphi, \quad (\psi);$
3 $\langle n^{\alpha} \rangle \varphi \vdash \langle n^{\beta} \rangle \varphi, \quad \text{for } \beta \leq \alpha;$
4 $\langle n^{\alpha+\beta} \rangle \varphi \equiv \langle n^{\beta} \rangle \langle n^{\alpha} \rangle \varphi;$
5 $\langle m+n^{\alpha} \rangle \varphi \vdash \langle m^{e^{n}(\alpha)} \rangle \varphi;$
6 $\langle n^{\alpha} \rangle A \equiv \langle n^{o^{\alpha}_{n}(A)} \rangle \top \land A \quad \text{for } \langle n^{\alpha} \rangle A \in \text{IW}.$

Signature and Ordinal Modalities TSC

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

æ

TSC Rules

1
$$\varphi \vdash \psi$$
 and $\phi \vdash \chi$, then $\varphi \vdash \psi \land \chi$;

2
$$\varphi \vdash \psi$$
 and $\psi \vdash \chi$ then $\varphi \vdash \chi$;

3 If
$$\varphi \vdash \psi$$
, then $\langle n^{\alpha} \rangle \varphi \vdash \langle n^{\alpha} \rangle \psi$;

$$\begin{array}{ccc} 4 & \varphi \vdash \psi \text{ then} \\ & \langle n^{\alpha} \rangle \varphi & \wedge & \langle m^{\beta+1} \rangle \psi \vdash & \langle n^{\alpha} \rangle (\varphi \wedge & \langle m^{\beta+1} \rangle \psi) & \text{ for } m < n \end{array}$$

Signature and Ordinal Modalities TSC

<ロ> (日) (日) (日) (日) (日)

Arithmetical Interpretation

We can define a translation \(\tau\) between modal formulas and arithmetical formulas numerating the axioms of Turing progressions.

Signature and Ordinal Modalities TSC

イロト イヨト イヨト イヨト

Arithmetical Interpretation

- We can define a translation τ between modal formulas and arithmetical formulas numerating the axioms of Turing progressions.
- By Th_{φ} we denote the arithmetical theory numerated by $\tau(\varphi)$.

Signature and Ordinal Modalities TSC

・ロト ・回ト ・ヨト ・ヨト

3

Theorem (Normal Form)

For every formula φ , there is a unique $A \in IW$ such that $\varphi \equiv A$.

Signature and Ordinal Modalities TSC

・ロン ・回 と ・ ヨン ・ ヨン

2

Theorem (Normal Form)

For every formula φ , there is a unique $A \in IW$ such that $\varphi \equiv A$.

Theorem (Completeness)

For any $\varphi, \psi \in \mathcal{L}_{\mathbb{F}}$,

$$EA^+ \vdash Th_{\psi} \subseteq Th_{\varphi} \quad iff \quad \varphi \vdash \psi.$$

lgnatiev sequences $\mathcal J$ Completeness

Contents

1 Overview

- 2 Turing Progressions
 - Turing Progressions
 - Graded Turing
 - Progressions
 - Some Principles

3 TSC

 Signature and Ordinal Modalities

TSC

4 Universal Frame $\mathcal J$

- Ignatiev sequences
 .7
- Completeness
- **5** Sequences with Finite Support
 - *H*
 - Completeness

イロト イヨト イヨト イヨト

Definability

 $\begin{array}{l} \text{Ignatiev sequences} \\ \mathcal{J} \\ \text{Completeness} \end{array}$

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Ignatiev sequences

Definition

We define ordinal logarithm as lg(0) := 0 and $lg(\alpha + \omega^{\beta}) := \beta$.

 $\begin{array}{l} \text{Ignatiev sequences} \\ \mathcal{J} \\ \text{Completeness} \end{array}$

(日) (同) (E) (E) (E)

Ignatiev sequences

Definition

We define ordinal logarithm as lg(0) := 0 and $lg(\alpha + \omega^{\beta}) := \beta$.

Definition

By \lg^{ω} we denote the set of ℓ -sequences or Ignatiev sequences. That is, the set of sequences $x := \langle x_0, x_1, x_2, ... \rangle$ where for $i < \omega$, $x_{i+1} \leq \lg(x_i)$.

Ignatiev sequences \mathcal{J} Completeness

・ロン ・回 と ・ ヨ と ・ ヨ と

3

 \mathcal{J}

We consider a minor variation on Ignatiev's frame.

Definition

 $\mathcal{J} := \langle I, \{R_n\}_{n < \omega} \rangle$, is defined as follows:

$$I := \{ x \in \lg^{\omega} : x_i < \Lambda \text{ for } i < \omega \};$$

$$xR_ny :\Leftrightarrow (\forall m \leq n \ x_m > y_m \land \forall i > n \ x_i \geq y_i).$$

Ignatiev sequences \mathcal{J} Completeness

 \mathcal{J}

We consider a minor variation on Ignatiev's frame.

Definition

$$\mathcal{J} := \langle I, \{R_n\}_{n < \omega} \rangle$$
, is defined as follows:

$$I := \{ x \in \lg^{\omega} : x_i < \Lambda \text{ for } i < \omega \};$$

$$xR_ny :\Leftrightarrow (\forall m \leq n \ x_m > y_m \land \forall i > n \ x_i \geq y_i).$$

Definition

Given $x, y \in I$ and R_n on I, we recursively define $xR_n^{\alpha}y$ as follows: **1** xR_n^0y : \Leftrightarrow x = y; **2** $xR_n^{1+\alpha}y$: $\Leftrightarrow \forall \beta < 1+\alpha \exists z (xR_nz \land zR_n^{\beta}y)$.

 $\begin{array}{l} \text{Ignatiev sequences} \\ \mathcal{J} \\ \text{Completeness} \end{array}$

・ロト ・回ト ・ヨト ・ヨト

æ

Completeness

Theorem

TSC is sound and complete w.r.t. \mathcal{J} i.e

$$\varphi \vdash \psi \quad iff \quad \forall x \in I \left(\mathcal{J}, x \Vdash \varphi \ \Rightarrow \ \mathcal{J}, x \Vdash \psi \right).$$

 ${\cal H}$ Completeness Definability

Contents

1 Overview

- 2 Turing Progressions
 - Turing Progressions
 - Graded Turing
 - Progressions
 - Some Principles

3 TSC

 Signature and Ordinal Modalities

- TSC
- 4 Universal Frame ${\cal J}$
 - Ignatiev sequences *T*
 - Ĵ
 - Completeness
- Sequences with Finite Support
 - *H*
 - Completeness

イロト イヨト イヨト イヨト

Definability

H Completeness Definability

Finite support

• For $\Lambda > \varepsilon_0$, we have Ignatiev sequences that never reach zero;

イロン イヨン イヨン イヨン

 ${\cal H}$ Completeness Definability

For $\Lambda > \varepsilon_0$, we have Ignatiev sequences that never reach zero;

イロン イヨン イヨン イヨン

 Define a new universal frame where we only consider sequences with finite support.

H Completeness Definability

Definition

 $\mathcal{H} := \langle H, \{S_n\}_{n < \omega} \rangle$, is defined as follows:

$$H := \{ x \in I : x_i = 0 \text{ for some } i < \omega \};$$

$$xS_ny :\Leftrightarrow (\forall m \le n \ x_m > y_m \land \forall i > n \ x_i \ge y_i).$$

Definition

Given $x, y \in H$ and S_n on H, we recursively define $xS_n^{\alpha}y$ as follows:

$$xS_n^0y :\Leftrightarrow x = y; xS_n^{1+\alpha}y :\Leftrightarrow \forall \beta < 1+\alpha \exists z (xS_nz \land zS_n^\beta y).$$

H Completeness Definability

・ロン ・回と ・ヨン ・ヨン

2

Definition

Let $x \in H$ and $\varphi \in \mathbb{F}$. By $x \Vdash \varphi$ we denote the validity of φ in x that is recursively defined as follows:

$$x \Vdash \top$$
 for all $x \in H$;

•
$$x \Vdash \varphi \land \psi$$
 iff $x \Vdash \varphi$ and $x \Vdash \psi$;

• $x \Vdash \langle n^{\alpha} \rangle \varphi$ iff there is $y \in H$, $xS_n^{\alpha}y$ and $y \Vdash \varphi$.

H Completeness Definability

・ロン ・回と ・ヨン ・ヨン

æ

Completeness

Theorem

For any $x \in H$ and $\varphi \in \mathbb{F}$,

$\mathcal{J}, x \Vdash \varphi \iff \mathcal{H}, x \Vdash \varphi.$

H Completeness Definability

Completeness

Theorem

For any
$$x \in H$$
 and $\varphi \in \mathbb{F}$,

$$\mathcal{J}, x \Vdash \varphi \iff \mathcal{H}, x \Vdash \varphi.$$

Theorem

For any $\varphi, \psi \in \mathbb{F}$, we have that:

$$arphidash \psi \iff orall x \in H\left(\mathcal{H}, x \Vdash arphi \Longrightarrow \mathcal{H}, x \Vdash \psi
ight).$$

・ロト ・回ト ・ヨト ・ヨト

æ

H Completeness Definability

イロン イヨン イヨン イヨン

æ

Definability

• For $x \in H$ we define $x^{\downarrow} := \{y : y_j < x_j \text{ for some } j < \omega\}.$

H Completeness Definability

Definability

For
$$x \in H$$
 we define $x^{\downarrow} := \{y : y_j < x_j \text{ for some } j < \omega\}.$

Theorem

For any $x \in H$ there is a unique $A \in IW$ such that:

$$\mathcal{H}, x \Vdash A \& \forall y \in x^{\downarrow}, \mathcal{H}, y \nvDash A.$$

イロン イヨン イヨン イヨン

æ

H Completeness Definability

• We can associate to any $x \in H$ an increasing worm A_x .

Proposition

For any $x, y \in H$:

$$xS_n^{\alpha}y \iff EA^+ \vdash \operatorname{Th}_{\langle n^{\alpha} \rangle A_v} \subseteq \operatorname{Th}_{A_x}.$$

・ロト ・日本 ・モート ・モート

H Completeness Definability

・ロト ・回 ト ・ヨト ・ヨト

æ

Thanks for coming!