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< con-Order

def .
T <con U & U proves consistence of T.

Empirical fact: <con is a linear well-founded preorder on natural
theories

121 <cCon - - - =<Con 1Zn <con PA =con ACA
ACAg <con Mi-CAg <con M3-CAg <cCon - - - <con Mig-CAg = PA,
PA2 <con PA3 <con -+ - <con PAx =con Z
Z <con Z+Ag-Coll <con Z+M1-Coll <con - - <con Z+MNs-Coll = ZF
ZF <con ZFC + dk k is inaccessible <cqn ...

Although it is possible to construct artificial examples of descending
chains consisting of true theories.

7-0 > Con 7_1 > Con T2 >Con - - -



M} soundndess and M} reflection

Let T be an r.e. extension of ACAg.

ACAg =PA + second order axiom of induction+
IXVx (¢(n) < x € X), for all arithmetical (M%) formulas ¢(x).

The M} reflection principle RFNH}(T) is M} sentence expressing
T is Mi-sound, e.g. T proves only true M} sentences.
More formally RFNni(T) is given by the sentence
Vo € M (Prv(T,9) = Tz (),

where Trni(x) is the partial truth definition for M} formulas.



Well-foundedness in reflection order

We put
T <m U <% Uk RFNpy(T).
Note that
T < U= T <con U.
Theorem

The restriction of <p1 on N}-sound extensions of ACAy is a
well-founded relation.



Proof of Well-Foundedness of <m

The negation of our theorem is the sentence DS

DS: “there is a descending chain in <1 starting with M}-sound r.e.
theory”

We will show that ACAg + DS = Con(ACAg + DS). Then by
Godel’s second incompleteness theorem ACAg + DS is inconsistent
and hence ACAg = —DS.

Let us reason in ACAp + DS. We have sequence
To >-|—|% T1 >-|—|% RN

where Tg is Mi-sound. Let S be the ¥1-sentence saying that “there
is a descending sequence in <1 starting from T1." Since S is true

and Tp is Mi-sound, there is a (countably coded) model
ME=To+S
But since To proves Mi-soundness of T1,

M = DS.



The case of RCAg

Over RCAq there are no truth definition for the class M} but there
are truth definitions for smaller classes M}(M°%), e.g. formulas of the
form VX ¢, where ¢ € M9, And we have reflection principles

Theorem
The restriction of <1 (ngy on N}(N9)-sound extensions of RCAg is
a well-founded relation.

Clarification: Note that we need partial truth definition for class of
formulas T to make reflection principle RENF a single sentence.
Otherwise we put RFN be the scheme

VX (Prv(T, ¢(X)) = ¢(X)), where ¢ €T.



Reflection in first-order arithmetic

Over the system of first-order arithmetic EA we have partial truth
definitions Trpo(x) and reflection principles RFNpo(T).
Theorem (Friedman, Smorynski, Solovay)

There are no recursive sequences of theories (T; | i € N) such that
Ty is consistent and

EAF Vx Prv(Tx," Con(Tx41) ).

Theorem

There are no recursive sequences of theories (T; | i € N) such that
To is I'Ig-sound and



Recursive descending chains

Recursive descending chain in <po:

To >—r|g T1 >—ng T> >—ng
Tn: IXq+" either RFNpg(PA) or RFNF, "(IX1), where p is Godel
2
number of the first proof of false £ sentence in PA”

Note that all T,, are true arithmeical theories.



Reflection Rank

For an r.e. extension T of ACAg we put

| T|aca, = « if T is in well-founded part of < and « is it's
well-founded rank
| T|aca, = 00, otherwise

More standard measure is M} proof-theoretic ordinal:
| Tlwo = sup{|a| | a is recursive linear order and T - WO(«)}.

Reflection ranks and proof-theoretic ordinals of some theories:

| - |acag | - lwo
ACA, 0 .
ACAq + COﬂ(ACAo) 0 €0
ACAq + RFNp: (ACA) 1 el
ACA, w Ew
ACA €0 580
ACAS ©(2,0) ©(2,0)
ATRg ) )




lterations of reflection principles
For recursive ordinal notations a we could define iterations
RFN?(T):
» RFNY r(T)=
> RFN““(T) = T + RFN(RFNE(T))
» RFN2(T) = U RFN&(T), X € Lim.
a<\

Theorem (Turing)

For each true TNy sentence F there is recursive ordinal notation «
Con*(PA) - F.
Theorem (Feferman)

For each true NS, sentence F there is recursive ordinal notation o

RFN&, (PA) + F.



Iterations of Mi-reflection
Theorem

RFNf1 (ACA0) =ny(ng) RPN

i g) (RCA0)

Proposition

‘RFNﬁi(ng)(RCAO)‘RCAo = |8
Proposition

ACAo - Ya (WO(a) < RFN2TE (RCAg
Ny (M3)

Corollary

IRFNE3 (ACAo) lwo = |eal-



Proving RFN} (ACAO) =ni(no) RFan(ﬂo (RCAy)

Let us consider pseudo-} language N% , i.e. arithmetical formulas
©(X) with free unary predicate X. We have embedding of
pseudo-M} language into second-order arithmetic

P(X) — VX ¢(X).

RFNG, (ACAo) =po_ RFNgo (PA(X)),
RFNS; (o) (RCAo) =ng RFNE(IX1(X)).
Schmerl-style formula for uniform pseudo-I} reflection
RFNfo (PA(X)) =ng RFNGp(IT2)
Thus

RFNG; (ACA0) =ns, RFNfie (PA(X)) =ng RFNg(IZ1) =ng RFN o) (RCAO)



Calculus RCy

Beklemishev approach to proof of Schmerl formula employs ordinal
notation system based on reflection principles.

Reflection calculus RC:
Formulas:

F:=T|FAF|<uF, where n ranges over N.

Sequents:
AF B, for RC-formulas A and B.
1. AFA A-T:ifAFBand BF C then AF C;
2. ANABFA; AANABFB;ifA-Band A- C then AF BAC;
3. if A+ B then C,AF LB, forall n e N;
4. O ,OnAE OLA, for every n € N;
5 C,AER LA, forall n > m;
6. CpANOLBE Op(ANO,LB), for all n > m.



Beklemishev's Ordinal Notation System

A<oB &L BE oA

A~B L AL Band B A

Theorem (Beklemishev)
(RCo/~, <o) is a well-ordering with order type .

It were done by Beklemishev by embedding this system in Cantor
ordinal notation system for ¢g.



Well-Foundedness Proof

Let us interpret RC-formulas by L>-theories. We interpret T as
T* = ACAo. And we interpret ¢pA as (OpA) = RFNH1+1(A*).

It is easy to see that AF B implies A* - B*.
Hence A <o B implies A* <1 B*.
Thus <q is a well-founded relation on the set of RCq formulas.



Thank You!



