Reflection ranks and proof theoretic ordinals (based on joint work with James Walsh)

Fedor Pakhomov Steklov Mathematical Institute, Moscow pakhf@mi.ras.ru

> Logic Colloquium 2018, Udine 24 July 2018

> > (日)

$$T \prec_{\mathsf{Con}} U \stackrel{\mathrm{def}}{\iff} U$$
 proves consistence of T .

Empirical fact: \prec_{Con} is a linear well-founded preorder on natural theories

$$\begin{split} & |\Sigma_{1} \prec_{\mathsf{Con}} \dots \prec_{\mathsf{Con}} |\Sigma_{n} \prec_{\mathsf{Con}} \mathsf{PA} \equiv_{\mathsf{Con}} \mathsf{ACA}_{0} \\ & \mathsf{ACA}_{0} \prec_{\mathsf{Con}} \Pi_{1}^{1} \cdot \mathsf{CA}_{0} \prec_{\mathsf{Con}} \Pi_{2}^{1} \cdot \mathsf{CA}_{0} \prec_{\mathsf{Con}} \dots \prec_{\mathsf{Con}} \Pi_{\infty}^{1} \cdot \mathsf{CA}_{0} = \mathsf{PA}_{2} \\ & \mathsf{PA}_{2} \prec_{\mathsf{Con}} \mathsf{PA}_{3} \prec_{\mathsf{Con}} \dots \prec_{\mathsf{Con}} \mathsf{PA}_{\infty} \equiv_{\mathsf{Con}} \mathsf{Z} \\ & \mathsf{Z} \prec_{\mathsf{Con}} \mathsf{Z} + \Delta_{0} \cdot \mathsf{Coll} \prec_{\mathsf{Con}} \mathsf{Z} + \Pi_{1} \cdot \mathsf{Coll} \prec_{\mathsf{Con}} \dots \prec_{\mathsf{Con}} \mathsf{Z} + \Pi_{\infty} \cdot \mathsf{Coll} = \mathsf{ZF} \\ & \mathsf{ZF} \prec_{\mathsf{Con}} \mathsf{ZFC} + \exists \kappa \kappa \text{ is inaccessible } \prec_{\mathsf{Con}} \dots \end{split}$$

Although it is possible to construct artificial examples of descending chains consisting of true theories.

$$T_0 \succ_{\text{Con}} T_1 \succ_{\text{Con}} T_2 \succ_{\text{Con}} \dots$$

Π_1^1 soundndess and Π_1^1 reflection

Let T be an r.e. extension of ACA₀.

 $\begin{aligned} \mathsf{ACA}_0 =& \mathsf{PA} + \mathsf{second} \text{ order axiom of induction} + \\ \exists X \forall x \; (\varphi(n) \leftrightarrow x \in X), \text{ for all arithmetical } (\Pi^0_\infty) \text{ formulas } \varphi(x). \end{aligned}$

The Π_1^1 reflection principle RFN $_{\Pi_1^1}(T)$ is Π_1^1 sentence expressing

T is Π_1^1 -sound, e.g. T proves only true Π_1^1 sentences.

More formally $\operatorname{RFN}_{\Pi^1_{\tau}}(T)$ is given by the sentence

$$\forall \varphi \in \mathsf{\Pi}^1_1 \ (\mathsf{Prv}(T, \varphi) \to \mathsf{Tr}_{\mathsf{\Pi}^1_1}(\varphi)),$$

where $\operatorname{Tr}_{\Pi_1^1}(x)$ is the partial truth definition for Π_1^1 formulas.

Well-foundedness in reflection order

We put

$$T \prec_{\Pi_1^1} U \iff U \vdash \mathsf{RFN}_{\Pi_1^1}(T).$$

Note that

$$T \prec_{\Pi_1^1} U \Rightarrow T \prec_{\mathsf{Con}} U.$$

Theorem

The restriction of $\prec_{\Pi_1^1}$ on Π_1^1 -sound extensions of ACA_0 is a well-founded relation.

Proof of Well-Foundedness of $\prec_{\Pi_1^1}$

The negation of our theorem is the sentence DS

DS: "there is a descending chain in $\prec_{\Pi_1^1}$ starting with $\Pi_1^1\text{-sound r.e.}$ theory"

We will show that $ACA_0 + DS \vdash Con(ACA_0 + DS)$. Then by Gödel's second incompleteness theorem $ACA_0 + DS$ is inconsistent and hence $ACA_0 \vdash \neg DS$.

Let us reason in $ACA_0 + DS$. We have sequence

$$T_0 \succ_{\Pi_1^1} T_1 \succ_{\Pi_1^1} \ldots,$$

where T_0 is Π_1^1 -sound. Let S be the Σ_1^1 -sentence saying that "there is a descending sequence in $\prec_{\Pi_1^1}$ starting from T_1 ." Since S is true and T_0 is Π_1^1 -sound, there is a (countably coded) model

$$\mathfrak{M} \models T_0 + S$$

But since T_0 proves Π_1^1 -soundness of T_1 ,

$$\mathfrak{M}\models\mathsf{DS}.$$

The case of RCA_0

Over RCA₀ there are no truth definition for the class Π_1^1 but there are truth definitions for smaller classes $\Pi_1^1(\Pi_n^0)$, e.g. formulas of the form $\forall \vec{X} \varphi$, where $\varphi \in \Pi_n^0$. And we have reflection principles $\text{RFN}_{\Pi_1^1(\Pi_n^0)}(\mathcal{T})$.

Theorem

The restriction of $\prec_{\Pi_1^1(\Pi_3^0)}$ on $\Pi_1^1(\Pi_3^0)$ -sound extensions of RCA₀ is a well-founded relation.

Clarification: Note that we need partial truth definition for class of formulas Γ to make reflection principle RFN_{Γ} a single sentence. Otherwise we put RFN_{Γ} be the scheme

 $\forall \vec{x} (\mathsf{Prv}(T, \varphi(\vec{x})) \rightarrow \varphi(\vec{x})), \text{ where } \varphi \in \Gamma.$

Reflection in first-order arithmetic

Over the system of first-order arithmetic EA we have partial truth definitions $Tr_{\Pi_{n}^{0}}(x)$ and reflection principles $RFN_{\Pi_{n}^{0}}(T)$.

Theorem (Friedman, Smorynski, Solovay)

There are no recursive sequences of theories $\langle T_i \mid i \in \mathbb{N} \rangle$ such that T_0 is consistent and

$$\mathsf{EA} \vdash \forall x \mathsf{Prv}(T_x, \lceil \mathsf{Con}(T_{\underline{x+1}}) \rceil).$$

Theorem

There are no recursive sequences of theories $\langle T_i \mid i \in \mathbb{N} \rangle$ such that T_0 is Π_3^0 -sound and

$$T_0 \succ_{\Pi_3^0} T_1 \succ_{\Pi_3^0} \ldots$$

Recursive descending chains

Recursive descending chain in $\prec_{\Pi_2^0}$:

 $T_0 \succ_{\Pi_2^0} T_1 \succ_{\Pi_2^0} T_2 \succ_{\Pi_2^0} \dots$ $T_n : \mathsf{I}\Sigma_1 + \text{``either } \mathsf{RFN}_{\Pi_2^0}(\mathsf{PA}) \text{ or } \mathsf{RFN}_{\Pi_2^0}^{p-n}(\mathsf{I}\Sigma_1), \text{ where } p \text{ is Gödel}$ number of the first proof of false Σ_1^0 sentence in PA'' Note that all T_n are true arithmeical theories.

・ロト・四ト・ヨト・ヨー うへの

Reflection Rank

For an r.e. extension T of ACA₀ we put

$$\begin{split} |\mathcal{T}|_{\mathsf{ACA}_0} &= \alpha \text{ if } \mathcal{T} \text{ is in well-founded part of } \prec_{\Pi_1^1} \text{ and } \alpha \text{ is it's} \\ & \text{well-founded rank} \\ |\mathcal{T}|_{\mathsf{ACA}_0} &= \infty \text{, otherwise} \end{split}$$

More standard measure is Π_1^1 proof-theoretic ordinal:

 $|T|_{WO} = \sup\{|\alpha| \mid \alpha \text{ is recursive linear order and } T \vdash WO(\alpha)\}.$

Reflection ranks and proof-theoretic ordinals of some theories:

	· ACA0	· wo
ACA ₀	0	ε_0
$ACA_0 + Con(ACA_0)$	0	ε_0
$ACA_0 + RFN_{\Pi_1^1}(ACA_0)$	1	ε_1
ACA ₀	ω	ε_{ω}
ACA	ε_0	$\varepsilon_{\varepsilon_0}$
ACA ₀ ⁺	$\varphi(2,0)$	$\varphi(2,0)$
ATR ₀	Γ ₀	Γ ₀
	•	▲□▶★舂▶★差▶★差▶ 差

Iterations of reflection principles

For recursive ordinal notations α we could define iterations RFN^{α}_{Γ}(T):

•
$$\operatorname{RFN}^0_{\Gamma}(T) = T$$

$$\blacktriangleright \mathsf{RFN}_{\mathsf{F}}^{\alpha+1}(\mathcal{T}) = \mathcal{T} + \mathsf{RFN}_{\mathsf{F}}(\mathsf{RFN}_{\mathsf{F}}^{\alpha}(\mathcal{T}))$$

►
$$\mathsf{RFN}^{\lambda}_{\mathsf{\Gamma}}(T) = \bigcup_{\alpha < \lambda} \mathsf{RFN}^{\alpha}_{\mathsf{\Gamma}}(T), \ \lambda \in \mathsf{Lim}.$$

Theorem (Turing)

For each true Π_1 sentence F there is recursive ordinal notation α

 $Con^{\alpha}(PA) \vdash F.$

Theorem (Feferman)

For each true Π^0_∞ sentence F there is recursive ordinal notation α

 $\mathsf{RFN}^{\alpha}_{\Pi^{\mathbf{0}}_{\infty}}(\mathsf{PA}) \vdash \mathsf{F}.$

Iterations of Π_1^1 -reflection

Theorem

$$\mathsf{RFN}^{\alpha}_{\mathsf{\Pi}^1_1}(\mathsf{ACA}_0) \equiv_{\mathsf{\Pi}^1_1(\mathsf{\Pi}^0_3)} \mathsf{RFN}^{\varepsilon_{\alpha}}_{\mathsf{\Pi}^1_1(\mathsf{\Pi}^0_3)}(\mathsf{RCA}_0)$$

$$\begin{aligned} &\mathsf{Proposition} \\ &|\mathsf{RFN}^{\beta}_{\Pi^{1}_{1}(\Pi^{0}_{3})}(\mathsf{RCA}_{0})|_{\mathsf{RCA}_{0}} = |\beta| \end{aligned}$$

Proposition

$$\mathsf{ACA}_{\mathsf{0}} \vdash \forall \alpha \; (\mathsf{WO}(\alpha) \leftrightarrow \mathsf{RFN}_{\mathsf{\Pi}_{1}^{\mathsf{1}}(\mathsf{\Pi}_{3}^{\mathsf{0}})}^{\alpha+1}(\mathsf{RCA}_{\mathsf{0}}))$$

Corollary

$$|\mathsf{RFN}^{\alpha}_{\Pi^1_1}(\mathsf{ACA}_0)|_{\mathsf{WO}} = |\varepsilon_{\alpha}|.$$

(ロ)

Proving $\mathsf{RFN}^{\alpha}_{\Pi^{1}_{1}}(\mathsf{ACA}_{0}) \equiv_{\Pi^{1}_{1}(\Pi^{0}_{3})} \mathsf{RFN}^{\varepsilon_{\alpha}}_{\Pi^{1}_{1}(\Pi^{0}_{3})}(\mathsf{RCA}_{0})$

Let us consider pseudo- Π_1^1 language Π_{∞}^0 , i.e. arithmetical formulas $\varphi(X)$ with free unary predicate X. We have embedding of pseudo- Π_1^1 language into second-order arithmetic $\varphi(X) \longmapsto \forall X \varphi(X)$.

$$\begin{aligned} \mathsf{RFN}^{\alpha}_{\Pi^{1}_{1}}(\mathsf{ACA}_{0}) \equiv_{\Pi^{0}_{\infty}} \mathsf{RFN}^{\alpha}_{\Pi^{0}_{\infty}}(\mathsf{PA}(X)), \\ \mathsf{RFN}^{\alpha}_{\Pi^{1}_{1}(\Pi^{0}_{3})}(\mathsf{RCA}_{0}) \equiv_{\Pi^{0}_{3}} \mathsf{RFN}^{\alpha}_{\Pi^{0}_{3}}(\mathsf{I}\Sigma_{1}(X)). \end{aligned}$$

Schmerl-style formula for uniform pseudo- Π_1^1 reflection

$$\mathsf{RFN}^{\alpha}_{\mathbf{\Pi}^{0}_{\infty}}(\mathsf{PA}(X)) \equiv_{\mathbf{\Pi}^{0}_{3}} \mathsf{RFN}^{\varepsilon_{\alpha}}_{\mathbf{\Pi}^{0}_{3}}(\mathsf{I}\Sigma_{1})$$

Thus

 $\mathsf{RFN}^{\alpha}_{\Pi_{1}^{\bullet}}(\mathsf{ACA}_{0}) \equiv_{\Pi_{\infty}^{\bullet}} \mathsf{RFN}^{\alpha}_{\Pi_{\infty}^{\bullet}}(\mathsf{PA}(X)) \equiv_{\Pi_{3}^{\bullet}} \mathsf{RFN}^{\varepsilon_{\alpha}}_{\Pi_{3}^{\bullet}}(\mathsf{I}\Sigma_{1}) \equiv_{\Pi_{3}^{\bullet}} \mathsf{RFN}^{\varepsilon_{\alpha}}_{\Pi_{1}^{\bullet}(\Pi_{3}^{\bullet})}(\mathsf{RCA}_{0})$

Calculus RC₀

Beklemishev approach to proof of Schmerl formula employs ordinal notation system based on reflection principles.

Reflection calculus RC: Formulas:

$$F ::= \top | F \land F | \diamondsuit_n F$$
, where *n* ranges over \mathbb{N} .

Sequents:

$$A \vdash B$$
, for RC-formulas A and B.

A⊢A; A⊢⊤; if A⊢B and B⊢C then A⊢C;
A∧B⊢A; A∧B⊢B; if A⊢B and A⊢C then A⊢B∧C;
if A⊢B then ◊_nA⊢◊_nB, for all n∈N;
◊_nA⊢◊_nA, for every n∈N;
◊_nA⊢◊_mA, for all n > m;
◊_nA∧◊_mB⊢◊_n(A∧◊_mB), for all n > m.

Beklemishev's Ordinal Notation System

$$A <_0 B \stackrel{\text{def}}{\iff} B \vdash \Diamond_0 A$$

$$A \sim B \iff A \vdash B \text{ and } B \vdash A$$

(日)

Theorem (Beklemishev)

 $(RC_0/\sim, <_0)$ is a well-ordering with order type ε_0 . It were done by Beklemishev by embedding this system in Cantor ordinal notation system for ε_0 . Let us interpret RC-formulas by \mathcal{L}_2 -theories. We interpret \top as $\top^* = ACA_0$. And we interpret $\diamondsuit_n A$ as $(\diamondsuit_n A)^* = \mathsf{RFN}_{\Pi_{n+1}^1}(A^*)$.

It is easy to see that $A \vdash B$ implies $A^* \vdash B^*$. Hence $A <_0 B$ implies $A^* <_{\prod_1^1} B^*$. Thus $<_0$ is a well-founded relation on the set of RC₀ formulas.

Thank You!

◆□▶◆□▶◆ミ▶◆ミ▶ ミークへぐ