Comparing the degrees of enumerability and the closed Medvedev degrees

Paul Shafer University of Leeds p.e.shafer@leeds.ac.uk http://www1.maths.leeds.ac.uk/~matpsh/

> Logic Colloquium 2018 Udine, Italy July 23–28, 2018

Joint work with Andrea Sorbi, University of Siena.

Paul Shafer – Leeds

Degrees of enumerability vs. closed degrees

Reducibilities and degrees

Turing reducibility: For $f, g: \omega \to \omega$

 $f \leq_{\mathrm{T}} g$ if there is a Turing functional Φ such that $f = \Phi(g)$.

Enumeration reducibility: For non-empty $A, B \subseteq \omega$

 $A \leq_{e} B$ if there is an enumeration operator Ψ such that $A = \Psi(B)$.

Equivalently: $A \leq_{e} B$ if there is a Turing functional Φ such that $\operatorname{ran} \Phi(g) = A$ when $\operatorname{ran} g = B$.

Medvedev reducibility: For $\mathcal{A}, \mathcal{B} \subseteq \omega^{\omega}$

 $\mathcal{A} \leq_{\mathrm{s}} \mathcal{B}$ if there is a Turing functional Φ such that $\Phi(g) \in \mathcal{A}$ when $g \in \mathcal{B}$.

For each \leq_{\circ} above, define the corresponding degrees:

- $A \equiv_{\circ} B$ if $A \leq_{\circ} B$ and $B \leq_{\circ} A$.
- $\deg_{\circ}(A) = \{B : B \equiv_{\circ} A\}.$

Embedding \mathcal{D}_{T} into \mathcal{D}_{e}

Let

- $\mathcal{D}_{\mathrm{T}} =$ the Turing degrees.
- $\mathcal{D}_{e} =$ the enumeration degrees.
- $\mathcal{D}_{s} =$ the Medvedev degrees.

In \mathcal{D}_{e} , $\deg_{e}(A \oplus \overline{A})$ plays the role of $\deg_{T}(A)$: $A \oplus \overline{A} \leq_{e} B \oplus \overline{B}$ if and only if $A \leq_{T} B$.

So $\deg_{\mathrm{T}}(A) \mapsto \deg_{\mathrm{e}}(A \oplus \overline{A})$ embeds \mathcal{D}_{T} into \mathcal{D}_{e} .

Theorem (Cai, Ganchev, Lempp, J. Miller, M. Soskova) The range of the embedding $\deg_{\mathrm{T}}(A) \mapsto \deg_{\mathrm{e}}(A \oplus \overline{A})$ is definable in \mathcal{D}_{e} .

Embedding \mathcal{D}_{T} into \mathcal{D}_{s}

Recall Medvedev reducibility: For $\mathcal{A}, \mathcal{B} \subseteq \omega^{\omega}$

 $\mathcal{A} \leq_{\mathrm{s}} \mathcal{B}$ if there is a Turing functional Φ such that $\Phi(g) \in \mathcal{A}$ when $g \in \mathcal{B}$.

In \mathcal{D}_s , $\deg_s(\{f\})$ plays the role of $\deg_T(f)$: $\{f\} \leq_s \{g\}$ if and only if $f \leq_T g$.

So $\deg_{\mathrm{T}}(f) \mapsto \deg_{\mathrm{s}}(\{f\})$ embeds \mathcal{D}_{T} into \mathcal{D}_{s} .

Theorem (Dyment, Medvedev)

The range of the embedding $\deg_{T}(f) \mapsto \deg_{s}(\{f\})$ is definable in \mathcal{D}_{s} .

Observe: $\{f\}$ is a closed subset of ω^{ω} , so the range of the embedding is contained within the Medvedev degrees of closed sets.

Paul Shafer - Leeds

Embedding $\mathcal{D}_{\rm e}$ into $\mathcal{D}_{\rm s}$

Recall again:

- $A \leq_{e} B$ if $\exists \Phi$ such that $\operatorname{ran} g = B \Rightarrow \operatorname{ran} \Phi(g) = A$.
- $\mathcal{A} \leq_{\mathrm{s}} \mathcal{B}$ if $\exists \Phi$ such that $g \in \mathcal{B} \Rightarrow \Phi(g) \in \mathcal{A}$.

For non-empty $A \subseteq \omega$, define

$$\mathcal{E}_A = \{f : \operatorname{ran} f = A\}.$$

In \mathcal{D}_s , $\deg_s(\mathcal{E}_A)$ plays the role of $\deg_e(A)$: $\mathcal{E}_A \leq_s \mathcal{E}_B$ if and only if $A \leq_e B$.

So $\deg_{e}(A) \mapsto \deg_{s}(\mathcal{E}_{A})$ embeds \mathcal{D}_{e} into \mathcal{D}_{s} .

Question (Rogers)

Is the range of the embedding $\deg_e(A) \mapsto \deg_s(\mathcal{E}_A)$ definable in \mathcal{D}_s ?

Degrees of enumerability versus closed degrees

In the Medvedev degrees, we define the **degrees of enumerability** and the **closed degrees**.

Degrees of enumerability:

Call $\mathcal{E}_A = \{f : \operatorname{ran} f = A\}$ the problem of enumerability of A. Call $\mathbf{E}_A = \deg_{\mathbf{s}}(\mathcal{E}_A)$ the corresponding degree of enumerability.

Closed degrees: Call $\mathbf{c} \in \mathcal{D}_s$ closed if $\mathbf{c} = \deg_s(\mathcal{C})$ for a closed $\mathcal{C} \subseteq \omega^{\omega}$.

We investigate: Where are the degrees of enumerability? **Specifically**: Where are the degrees of enumerability with respect to the closed degrees?

Recall that every Medvedev degree in the range of the embedding of \mathcal{D}_T into \mathcal{D}_s is a closed degree.

Degrees of enumerability that are also closed degrees

It is easy to see that degrees of enumerability can be closed degrees:

$$\mathcal{E}_{A \oplus \overline{A}} \equiv_{\mathrm{s}} \{A\} \quad \text{ for every set } A \subseteq \omega.$$

Call the Medvedev degrees of the form $\deg_s(\{A\})$ the degrees of solvability.

The degrees of solvability are the Medvedev degrees that correspond to Turing degrees.

Can a degree of enumerability be closed in a non-trivial way?

That is, are there closed degrees of enumerability that are not also degrees of solvability?

Non-trivially closed degrees of enumerability

There are degrees of enumerability that are closed in a non-trivial way.

In fact, there are closed degrees of enumerability that do not bound degrees of solvability (except 0).

Theorem

There is a closed (in fact compact) degree of enumerability $\mathbf{E}_A >_s \mathbf{0}$ that does not bound a non-zero degree of solvability:

 $\neg \exists s (0 <_s s \leq_s E_A \text{ and } s \text{ is a degree of solvability}).$

Uniformly e-pointed trees and compactness

Definition (Modification of a definition by Montalbán)

A uniformly e-pointed tree (w.r.t. functions) is a tree $T \subseteq \omega^{<\omega}$ s.t.

- T is finitely branching with **no leaves** and
- there is an enumeration operator Ψ such that $\Psi(\operatorname{graph} g) = T$ for all $g \in [T]$.

(That is, every path through the tree can enumerate the tree, uniformly.)

Lemma

- (1) For $A \subseteq \omega$, \mathbf{E}_A is a compact degree of enumerability if and only if there is a uniformly e-pointed tree T such that $A \equiv_{\mathrm{e}} T$.
- (2) There is a uniformly e-pointed tree T that is **not** r.e. and is such that there is no non-recursive B with $B \oplus \overline{B} \leq_{e} T$.

 \mathbf{E}_T is then the desired nontrivially compact degree of enumerability.

Definition (This idea has a long history. See Andrews et al.)

- A set $A \subseteq \omega$ is **cototal** if $A \leq_{e} \overline{A}$.
- An enumeration degree d is cototal if $d = deg_e(A)$ for a cototal A.

Facts:

- An enumeration degree is cototal iff it contains a uniformly e-pointed tree (see also McCarthy for a more thorough study of cototality and pointedness).
- From the previous slide, a degree of enumerability \mathbf{E}_A is compact iff $A \equiv_{e} T$ for a uniformly e-pointed tree T.
- Therefore a degree of enumerability \mathbf{E}_A is compact iff A has cototal enumeration degree.

The rest of the mess

We have shown that it is possible for a Medvedev degree to be both a closed degree and a degree of enumerability in a non-trivial way.

Also:

• There are closed degrees $\mathbf{c} >_{\mathrm{s}} \mathbf{0}$ such that there are no degrees of enumerability \mathbf{E}_A with $\mathbf{0} <_{\mathrm{s}} \mathbf{E}_A \leq_{\mathrm{s}} \mathbf{c}$.

(The degree $\mathbf{c}=\deg_s(\{0,1\}\text{-valued DNR functions})$ is a good example. It is uncountable and meet-irreducible.)

• There are degrees of enumerability $\mathbf{E}_A >_s \mathbf{0}$ such that there are no closed degrees \mathbf{c} with $\mathbf{0} <_s \mathbf{c} \leq_s \mathbf{E}_A$.

(To do this, build a non-r.e. set A such that whenever $T \leq_{e} A$ is a tree with no leaves, T must have an r.e. subtree with no leaves.)

Thank you for coming to my talk! Do you have a question about it?