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HTP: Hilbert’s Tenth Problem

Definition
For a ring R, Hilbert’s Tenth Problem for R is the set

HTP(R) = {f ∈ R[X0,X1, . . .] : (∃~a ∈ R<ω) f (a0, . . . ,an) = 0}

of all polynomials (in several variables) with solutions in R.

So HTP(R) is computably enumerable (c.e.) relative to the atomic
diagram of R.

Hilbert’s original formulation in 1900 demanded a decision procedure
for HTP(Z).

Theorem (DPRM, 1970)

HTP(Z) is undecidable: indeed, HTP(Z) ≡1 ∅′.

The most obvious open question is the Turing degree of HTP(Q).
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HTP as a Pseudojump Operator

We will consider HTP(R) for subrings R ⊆ Q. Such subrings
correspond bijectively to subsets W of P = { all primes }:

W ←→ RW := Z
[

1
p

: p ∈W
]
.

So the HTP operator maps 2P into 2ω ∼= 2Z[X1,X2,...] via

W 7→ HTP(RW ).

Notice that HTP(RW ) is always c.e. in W . (Indeed, there is a uniform
enumeration reduction HTP(RW ) ≤e W .) Also, W ≤T HTP(RW ), since
p ∈W ⇐⇒ (pX − 1) ∈ HTP(RW ). Therefore, HTP is a pseudojump
operator, as defined by Jockusch and Shore.
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HTP(RW ) vs. W ′

It is immediate that HTP(RW ) ≤1 W ′. The MRDP result shows that
1-equivalence can hold: when W = ∅, we have HTP(R∅) ≡1 ∅′.

It is possible to have W ′ 6≡T HTP(RW ): let W be c.e. and nonlow.
Then we can still search effectively for solutions to f = 0 in RW , so
HTP(RW ) is c.e. Hence HTP(RW ) ≤1 ∅′ <T W ′ for such sets W .

In fact, HTP(RW ) ≡1 W is also possible, e.g. for a c.e. set W ≡1 ∅′.
The sets ∅ and ∅′ already establish:

Fact
It is possible to have HTP(RV ) ≡T HTP(RW ) even when V 6≡T W .

First question today: when V ≡T W , must HTP(RV ) ≡T HTP(RW )?
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One useful polynomial
Define f (X ,Y , . . .) = (X 2 + Y 2 − 1)2 + (“X > 0”)2 + (“Y > 0”)2.
Solutions to f = 0 correspond to nonzero pairs (a

c ,
b
c ) with

a2 + b2 = c2. What are the prime factors of c here?

If 2 divides c, then a2 + b2 ≡ 0 mod 4, so a2 ≡ b2 ≡ 0 mod 4, so a, b,
and c had a common factor of 2.
If an odd prime p divides c, then a2 ≡ −b2 mod p, and so −1 is a
square modulo p. Hence p ≡ 1 mod 4.

But if p ≡ 1 mod 4, then p = m2 + n2 for some m,n ∈ Z, and then(
m2 − n2

p

)2

+

(
2mn

p

)2

=
(m4 − 2m2n2 + n4) + 4m2n2

p2

=
(m2 + n2)2

p2 = 1.

So f ∈ HTP(RW ) iff W contains some p ≡ 1 mod 4.
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Usefulness of f (X ,Y )

Fix one index e. To make HTP(RV ) encode the answer to the question
“Is e ∈ Fin?” we start enumerating the c.e. set We.

Each time We acquires a new element, delete the next prime
≡ 1 mod 4 from V .

Thus we co-enumerate a set V of primes such that

e ∈ Fin ⇐⇒ V contains a prime ≡ 1 mod 4 ⇐⇒ f ∈ HTP(RV ).

Problem: this only encodes one bit of Fin into HTP(RV ).
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Many useful polynomials (joint with Ken Kramer)

Theorem (Kramer & M.)
The HTP operator (W 7→ HTP(RW )) does not respect Turing
equivalence.

For this we need an entire sequence of polynomials. Here it is:

Lemma

For an odd prime q, let fq(X ,Y ) = X 2 + qY 2 − 1 (modified to make
Y > 0). Then in every solution (a

c ,
b
c ) ∈ Q2 to fq = 0, all prime factors p

of c satisfy (−q
p ) = 1, i.e., −q is a square mod p.

Conversely, for any such p, Z[ 1
p ] contains a nontrivial solution to fq = 0.

So the q-appropriate primes p are those for which (−q
p ) = 1.
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Making HTP(RW ) compute ∅′′

Recall: Fin = {e : We is finite} is Σ0
2-complete, hence ≡T ∅′′.

We build a co-c.e. set V of primes, with the goal that (∀e)

fqe ∈ HTP(RV ) ⇐⇒ e ∈ Fin.

Each time We acquires a new element, we wish to remove the next
qe-appropriate prime from V . With a priority strategy, this succeeds all
but finitely often. It is then possible to compute Fin from HTP(RV ),
using a theorem of Eisenträger-M.-Park-Shlapentokh on semilocal
subrings of Q.

However, V is c.e., so HTP(RV ) is also c.e., hence ≤T ∅′ < HTP(RV ).
Thus V ≡T V , yet HTP(RV ) and HTP(RV ) differ by a full jump, which is
the maximum possible difference.
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HTP and Turing reducibility

We can use high permitting to prove

Theorem (Kramer & M.)

Below every high c.e. set C, there exists a Π0
1 set W ≤T C with

HTP(RW ) ≡T ∅′′.

High permitting (below a c.e. set C <T S) builds U as before, so that
HTP(RU) ≡T ∅′′.

Corollary (Kramer & M.)
There exist subrings R, S of Q with R <T S (as subsets of Q), yet with

HTP(S) <T HTP(R).
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High permitting

Ordinary c.e. permitting below C would only ensure that infinitely many
qe-appropriate primes are permitted to be removed from U. High
permitting (with C high) ensures that all but finitely many such primes
leave U. Therefore, we can ask an HTP(RU) oracle whether fqe has
roots in RU−{p0,p1,...,pn}, for n = 0,1,2, . . . .

Now e ∈ Inf iff some n gives the answer “no,” so HTP(RU) can
enumerate Inf, and therefore can compute Inf. (Notice that ∅′ ≤1 Inf,
so enumerating Inf allows computation of ∅′, hence allows
enumeration of Fin as well.)
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A more specific question

Theorem

For every Σ0
2 degree d ≥ 0′, there is a Π0

1 set W with HTP(RW ) ∈ d .

We have a Σ1 set C with C′ ∈ d . The construction is similar to the
preceding one, except that now we wish to code into HTP(RW )
whether

(∀s)(∃t > s)
[
ΦCs

e,s(e)↓ =⇒ Ct�use 6= Cs�use
]
.

Coding this makes C′ ≤T HTP(RW ). The opposite reduction holds
because W ≤T C. For requirement e, we only enumerate elements
x > e into W . Given x , we wait until either x leaves W or every ΦCs

e,s(e)
with e ≤ x has converged with correct Cs�use. This is C-decidable.
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1-reductions

The construction above can be refined to yield 1-reductions:

Tweak

For every Π0
1 set C, there is another Π0

1 set W ≡T C such that
C′ ≡1 W ′ ≡1 HTP(RW ).

This construction does not mix with the high permitting.

Using results of Jockusch and Kurtz, we infer:

Theorem
Measure-1-many and comeager-many sets U ⊆ P satisfy both of:

U ′ 6≤1 HTP(RU) (this is a previous theorem)
but there is a set W ≡T U with U ′ ≡1 W ′ ≡1 HTP(RW );

These follow because almost all U are c.e. relative to some set <T U.
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