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HTP: Hilbert’s Tenth Problem

Definition
For aring R, Hilbert’s Tenth Problem for R is the set

HTP(R) = {f € R[Xo, Xi... ] : (33 € R<¥) f(a, ..., an) = 0}

of all polynomials (in several variables) with solutions in R.

So HTP(R) is computably enumerable (c.e.) relative to the atomic
diagram of R.

Hilbert’s original formulation in 1900 demanded a decision procedure
for HTP(Z).

Theorem (DPRM, 1970)
HTP(Z) is undecidable: indeed, HTP(Z) =4 V. J

The most obvious open question is the Turing degree of HTP(Q).
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HTP as a Pseudojump Operator

We will consider HTP(R) for subrings R C Q. Such subrings
correspond bijectively to subsets W of P = { all primes }:

W +—— RW::ZU):,DGW].

So the HTP operator maps 2 into 2« = 2Z[X1.Xz.--] yig
W s HTP(Ry).

Notice that HTP(Ry) is always c.e. in W. (Indeed, there is a uniform
enumeration reduction HTP(Ry) <e W.) Also, W < HTP(Rw), since
pe W < (pX —1) € HTP(Rw). Therefore, HTP is a pseudojump
operator, as defined by Jockusch and Shore.
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HTP(Ry) vs. W’

It is immediate that HTP(Ry) <{ W’. The MRDP result shows that
1-equivalence can hold: when W = (), we have HTP(Ry) =4 (.

It is possible to have W’ £+ HTP(Rw): let W be c.e. and nonlow.
Then we can still search effectively for solutions to f = 0 in Ry, so
HTP(Rw) is c.e. Hence HTP(Ry) <1 0 <1 W’ for such sets W.

In fact, HTP(Rw) =4 W is also possible, e.g. for ac.e. set W =1 (.
The sets () and (' already establish:

Fact
It is possible to have HTP(Ry) =7 HTP(Rw) even when V £ W. }

First question today: when V =1 W, must HTP(Ry) =1 HTP(Rw)?
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One useful polynomial

Define f(X,Y,...) = (X2 + Y2 —=1)2 4+ ("X > 0")2 + ("Y > 0")2.
Solutions to f = 0 correspond to nonzero pairs (£, C) with

& + b? = 2. What are the prime factors of ¢ here?

If 2 divides ¢, then & + b? = 0 mod 4, so a@® = b?> = 0 mod 4, so a, b,
and ¢ had a common factor of 2.

If an odd prime p divides ¢, then & = —b? mod p, and so —1 is a
square modulo p. Hence p = 1 mod 4.

But if p = 1 mod 4, then p = m? + n? for some m, n € Z, and then

<m2 - n2>2 N <2mn>2 (m* —2mPn? + n*) + 4mP P

p p ) pP?
(m2 4 n2)2
So f € HTP(Rw) iff W contains some p = 1 mod 4.



Usefulness of (X, Y)

Fix one index e. To make HTP(Ry/) encode the answer to the question
“Is e € Fin?” we start enumerating the c.e. set We.

@ Each time W, acquires a new element, delete the next prime
=1 mod 4 from V.

Thus we co-enumerate a set V of primes such that

e € Fin < V contains a prime =1 mod 4 <= f e HTP(Ry).
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Usefulness of (X, Y)

Fix one index e. To make HTP(Ry/) encode the answer to the question
“Is e € Fin?” we start enumerating the c.e. set We.

@ Each time W, acquires a new element, delete the next prime
=1 mod 4 from V.

Thus we co-enumerate a set V of primes such that
e € Fin < V contains a prime =1 mod 4 <= f e HTP(Ry).

Problem: this only encodes one bit of Fin into HTP(Ry).
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Many useful polynomials (joint with Ken Kramer)

Theorem (Kramer & M.)

The HTP operator (W — HTP(Ry)) does not respect Turing
equivalence.

For this we need an entire sequence of polynomials. Here it is:

Lemma

For an odd prime g, let f,(X, Y) = X2 + qY? — 1 (modified to make
Y > 0). Then in every solution (£, LC’) € Q?to f, = 0, all prime factors p
of ¢ satisfy (‘7") =1,i.e., —qis a square mod p.
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Many useful polynomials (joint with Ken Kramer)

Theorem (Kramer & M.)

The HTP operator (W — HTP(Ry)) does not respect Turing
equivalence.

For this we need an entire sequence of polynomials. Here it is:
Lemma

For an odd prime q, let f3(X, Y) = X? + gY? — 1 (modified to make

Y > 0). Then in every solution (£, LC’) € Q?to f, = 0, all prime factors p
of ¢ satisfy (‘7") =1,i.e., —qis a square mod p.

Conversely, for any such p, Z[}—)] contains a nontrivial solution to f; = 0.

v

So the g-appropriate primes p are those for which (‘Tﬁ) =1.
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Making HTP(R,) compute ("

Recall: Fin = {e : W, is finite} is £3-complete, hence =1 §".
We build a co-c.e. set V of primes, with the goal that (Ve)

fqe € HTP(Ry) < e c Fin.

Each time W, acquires a new element, we wish to remove the next
ge-appropriate prime from V. With a priority strategy, this succeeds all
but finitely often. It is then possible to compute Fin from HTP(Ry),
using a theorem of Eisentrager-M.-Park-Shlapentokh on semilocal
subrings of Q.

However, Vis c.e., so HTP(Ry) is also c.e., hence <t (/ < HTP(Ry).

Thus V =1 V, yet HTP(Ry) and HTP(Ry) differ by a full jump, which is
the maximum possible difference.
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HTP and Turing reducibility

We can use high permitting to prove
Theorem (Kramer & M.)

Below every high c.e. set C, there exists a M9 set W <1 C with

HTP(Rw) =1 0.

High permitting (below a c.e. set C <t S) builds U as before, so that
HTP(Ru) =T (Z)”.

Corollary (Kramer & M.)
There exist subrings R, S of Q with R <1 S (as subsets of Q), yet with

HTP(S) <1 HTP(R).

Russell Miller (CUNY) HTP as Pseudojump Operator Logic Colloquium 9/12



High permitting

Ordinary c.e. permitting below C would only ensure that infinitely many
ge-appropriate primes are permitted to be removed from U. High
permitting (with C high) ensures that all but finitely many such primes
leave U. Therefore, we can ask an HTP(Ry) oracle whether f,, has
roots in Ry_(py.py.....onps fOrn=0,1,2,....

Now e € Inf iff some n gives the answer “no,” so HTP(Ry) can
enumerate Inf, and therefore can compute Inf. (Notice that ¢ <; Inf,
so enumerating Inf allows computation of (', hence allows
enumeration of Fin as well.)
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A more specific question

Theorem
For every 3 degree d > 0', there is a N9 set W with HTP(Ry) € d. J

We have a ¥4 set C with C’ € d. The construction is similar to the
preceding one, except that now we wish to code into HTP(Ry)
whether

(Vs)(3t > s) [d>gfs(e)¢ — Ciluse # Csluse| .

Coding this makes C’' <t HTP(Ry). The opposite reduction holds
because W < C. For requirement e, we only enumerate elements
x > einto W. Given x, we wait until either x leaves W or every <Dgfs(e)
with e < x has converged with correct Cs|use. This is C-decidable.
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1-reductions

The construction above can be refined to yield 1-reductions:
Tweak

For every MY set C, there is another N9 set W =7 C such that
c =1 w’ =1 HTP(Rw)

This construction does not mix with the high permitting.

Using results of Jockusch and Kurtz, we infer:

Theorem

Measure-1-many and comeager-many sets U C P satisfy both of:
@ U £1 HTP(Ry) (thisis a previous theorem)
@ but there is a set W =1 U with U' =1 W' =1 HTP(Rw);

These follow because almost all U are c.e. relative to some set <+ U.
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