Hilbert's Tenth Problem as a Pseudojump Operator

Russell Miller

Queens College & CUNY Graduate Center

Logic Colloquium Udine, Italy 26 July 2018

(Partially joint work with Ken Kramer.)

HTP: Hilbert's Tenth Problem

Definition

For a ring R, Hilbert's Tenth Problem for R is the set

 $HTP(R) = \{ f \in R[X_0, X_1, \ldots] : (\exists \vec{a} \in R^{<\omega}) \ f(a_0, \ldots, a_n) = 0 \}$

of all polynomials (in several variables) with solutions in *R*.

So HTP(R) is computably enumerable (c.e.) relative to the atomic diagram of R.

Hilbert's original formulation in 1900 demanded a decision procedure for $HTP(\mathbb{Z})$.

Theorem (DPRM, 1970)

 $HTP(\mathbb{Z})$ is undecidable: indeed, $HTP(\mathbb{Z}) \equiv_1 \emptyset'$.

The most obvious open question is the Turing degree of $HTP(\mathbb{Q})$.

Russell Miller (CUNY)

HTP as a Pseudojump Operator

We will consider HTP(R) for subrings $R \subseteq \mathbb{Q}$. Such subrings correspond bijectively to subsets *W* of $\mathbb{P} = \{ \text{ all primes } \}$:

$$W \iff R_W := \mathbb{Z}\left[\frac{1}{p} : p \in W\right].$$

So the **HTP operator** maps $2^{\mathbb{P}}$ into $2^{\omega} \cong 2^{\mathbb{Z}[X_1, X_2, ...]}$ via

$$W \mapsto HTP(R_W).$$

Notice that $HTP(R_W)$ is always c.e. in W. (Indeed, there is a uniform enumeration reduction $HTP(R_W) \leq_e W$.) Also, $W \leq_T HTP(R_W)$, since $p \in W \iff (pX - 1) \in HTP(R_W)$. Therefore, HTP is a *pseudojump operator*, as defined by Jockusch and Shore.

$HTP(R_W)$ vs. W'

It is immediate that $HTP(R_W) \leq_1 W'$. The MRDP result shows that 1-equivalence can hold: when $W = \emptyset$, we have $HTP(R_{\emptyset}) \equiv_1 \emptyset'$.

It is possible to have $W' \not\equiv_T \text{HTP}(R_W)$: let W be c.e. and nonlow. Then we can still search effectively for solutions to f = 0 in R_W , so $\text{HTP}(R_W)$ is c.e. Hence $\text{HTP}(R_W) \leq_1 \emptyset' <_T W'$ for such sets W.

In fact, $HTP(R_W) \equiv_1 W$ is also possible, e.g. for a c.e. set $W \equiv_1 \emptyset'$. The sets \emptyset and \emptyset' already establish:

Fact

It is possible to have $HTP(R_V) \equiv_T HTP(R_W)$ even when $V \neq_T W$.

First question today: when $V \equiv_T W$, must $HTP(R_V) \equiv_T HTP(R_W)$?

One useful polynomial

Define $f(X, Y, ...) = (X^2 + Y^2 - 1)^2 + ("X > 0")^2 + ("Y > 0")^2$. Solutions to f = 0 correspond to nonzero pairs $(\frac{a}{c}, \frac{b}{c})$ with $a^2 + b^2 = c^2$. What are the prime factors of *c* here?

If 2 divides *c*, then $a^2 + b^2 \equiv 0 \mod 4$, so $a^2 \equiv b^2 \equiv 0 \mod 4$, so *a*, *b*, and *c* had a common factor of 2. If an odd prime *p* divides *c*, then $a^2 \equiv -b^2 \mod p$, and so -1 is a square modulo *p*. Hence $p \equiv 1 \mod 4$.

But if $p \equiv 1 \mod 4$, then $p = m^2 + n^2$ for some $m, n \in \mathbb{Z}$, and then

$$\left(\frac{m^2 - n^2}{p}\right)^2 + \left(\frac{2mn}{p}\right)^2 = \frac{(m^4 - 2m^2n^2 + n^4) + 4m^2n^2}{p^2}$$
$$= \frac{(m^2 + n^2)^2}{p^2} = 1.$$

So $f \in HTP(R_W)$ iff W contains some $p \equiv 1 \mod 4$.

Usefulness of f(X, Y)

Fix one index *e*. To make $HTP(R_V)$ encode the answer to the question "Is $e \in Fin$?" we start enumerating the c.e. set W_e .

• Each time W_e acquires a new element, delete the next prime $\equiv 1 \mod 4$ from V.

Thus we co-enumerate a set V of primes such that

$$e \in Fin \iff V$$
 contains a prime $\equiv 1 \mod 4 \iff f \in HTP(R_V)$.

Usefulness of f(X, Y)

Fix one index *e*. To make $HTP(R_V)$ encode the answer to the question "Is $e \in Fin$?" we start enumerating the c.e. set W_e .

• Each time W_e acquires a new element, delete the next prime $\equiv 1 \mod 4$ from V.

Thus we co-enumerate a set V of primes such that

$$e \in Fin \iff V$$
 contains a prime $\equiv 1 \mod 4 \iff f \in HTP(R_V)$.

Problem: this only encodes one bit of **Fin** into $HTP(R_V)$.

Many useful polynomials (joint with Ken Kramer)

Theorem (Kramer & M.)

The HTP operator $(W \mapsto HTP(R_W))$ does not respect Turing equivalence.

For this we need an entire sequence of polynomials. Here it is:

Lemma

For an odd prime q, let $f_q(X, Y) = X^2 + qY^2 - 1$ (modified to make Y > 0). Then in every solution $(\frac{a}{c}, \frac{b}{c}) \in \mathbb{Q}^2$ to $f_q = 0$, all prime factors p of c satisfy $(\frac{-q}{p}) = 1$, i.e., -q is a square mod p.

Many useful polynomials (joint with Ken Kramer)

Theorem (Kramer & M.)

The HTP operator $(W \mapsto HTP(R_W))$ does not respect Turing equivalence.

For this we need an entire sequence of polynomials. Here it is:

Lemma

For an odd prime q, let $f_q(X, Y) = X^2 + qY^2 - 1$ (modified to make Y > 0). Then in every solution $(\frac{a}{c}, \frac{b}{c}) \in \mathbb{Q}^2$ to $f_q = 0$, all prime factors p of c satisfy $(\frac{-q}{p}) = 1$, i.e., -q is a square mod p. Conversely, for any such p, $\mathbb{Z}[\frac{1}{p}]$ contains a nontrivial solution to $f_q = 0$.

So the *q*-appropriate primes *p* are those for which $\left(\frac{-q}{p}\right) = 1$.

Making $HTP(R_W)$ compute \emptyset''

Recall: **Fin** = { $e : W_e$ is finite} is Σ_2^0 -complete, hence $\equiv_T \emptyset''$. We build a co-c.e. set *V* of primes, with the goal that ($\forall e$)

$$f_{q_e} \in HTP(R_V) \iff e \in Fin.$$

Each time W_e acquires a new element, we wish to remove the next q_e -appropriate prime from V. With a priority strategy, this succeeds all but finitely often. It is then possible to compute **Fin** from $HTP(R_V)$, using a theorem of Eisenträger-M.-Park-Shlapentokh on semilocal subrings of \mathbb{Q} .

However, \overline{V} is c.e., so $\text{HTP}(R_{\overline{V}})$ is also c.e., hence $\leq_T \emptyset' < \text{HTP}(R_V)$. Thus $V \equiv_T \overline{V}$, yet $\text{HTP}(R_{\overline{V}})$ and $\text{HTP}(R_V)$ differ by a full jump, which is the maximum possible difference.

HTP and Turing reducibility

We can use high permitting to prove

Theorem (Kramer & M.)

Below every high c.e. set C, there exists a Π_1^0 set $W \leq_T C$ with

 $HTP(R_W) \equiv_T \emptyset''.$

High permitting (below a c.e. set $C <_T S$) builds U as before, so that $HTP(R_U) \equiv_T \emptyset''$.

Corollary (Kramer & M.)

There exist subrings R, S of \mathbb{Q} with $R <_T S$ (as subsets of \mathbb{Q}), yet with

 $HTP(S) <_T HTP(R).$

High permitting

Ordinary c.e. permitting below *C* would only ensure that infinitely many q_e -appropriate primes are permitted to be removed from *U*. High permitting (with *C* high) ensures that *all but finitely many* such primes leave *U*. Therefore, we can ask an $HTP(R_U)$ oracle whether f_{q_e} has roots in $R_{U-\{p_0,p_1,...,p_n\}}$, for n = 0, 1, 2, ...

Now $e \in Inf$ iff some *n* gives the answer "no," so $HTP(R_U)$ can enumerate Inf, and therefore can compute Inf. (Notice that $\overline{\emptyset'} \leq_1 Inf$, so enumerating Inf allows computation of \emptyset' , hence allows enumeration of Fin as well.)

A more specific question

Theorem

For every Σ_2^0 degree $\boldsymbol{d} \geq \boldsymbol{0}'$, there is a Π_1^0 set W with $HTP(R_W) \in \boldsymbol{d}$.

We have a Σ_1 set *C* with $C' \in d$. The construction is similar to the preceding one, except that now we wish to code into $HTP(R_W)$ whether

$$(\forall s)(\exists t > s) \left[\Phi_{e,s}^{C_s}(e) \downarrow \Longrightarrow C_t \upharpoonright \mathsf{use} \neq C_s \upharpoonright \mathsf{use}
ight].$$

Coding this makes $C' \leq_T HTP(R_W)$. The opposite reduction holds because $W \leq_T C$. For requirement *e*, we only enumerate elements x > e into *W*. Given *x*, we wait until either *x* leaves *W* or every $\Phi_{e,s}^{C_s}(e)$ with $e \leq x$ has converged with correct C_s use. This is *C*-decidable.

1-reductions

The construction above can be refined to yield 1-reductions:

Tweak

For every Π_1^0 set *C*, there is another Π_1^0 set $W \equiv_T C$ such that $C' \equiv_1 W' \equiv_1 HTP(R_W)$.

This construction does *not* mix with the high permitting.

Using results of Jockusch and Kurtz, we infer:

Theorem

Measure-1-many and comeager-many sets $U \subseteq \mathbb{P}$ satisfy both of:

• $U' \leq_1 HTP(R_U)$ (this is a previous theorem)

• but there is a set $W \equiv_T U$ with $U' \equiv_1 W' \equiv_1 HTP(R_W)$;

These follow because almost all U are c.e. relative to some set $<_T U$.