Hereditarily finite list superstructures and list structures

Svetlana Aleksandrova
Novosibirsk State University

LC 2018
Hereditarily finite and list superstructures
• Barwise: Admissible sets.
• Ershov: Σ—definability in hereditarily finite superstructures.
• Goncharov and Sviridenko: lists over the elements of a given abstract data type.
Hereditarily finite superstructure

Let \mathcal{M} be a model of σ

- $HF_0(M) = M$
- $HF_{n+1}(M) = HF_n(M) \cup \mathcal{P}_\omega(HF_n(M))$
- $HF(M) = \bigcup_{n<\omega} HF_n(M)$

Then HF superstructure $\mathbb{HF}(\mathcal{M}) = \langle M, HF(M), \sigma \cup \{\emptyset, \in^2, U^1\} \rangle$
Hereditarily finite list superstructure

Let \mathcal{M} be a model of σ

- elements of $S^0(M)$ are finite lists of M,
- elements of $S^{n+1}(M)$ are finite lists of $S^n(M) \cup M$.
- $S(M) = \bigcup_{n \in \omega} S^n(M)$

Then $HW(\mathcal{M}) = \langle M, S(M), \sigma \cup \{\text{head, tail, cons, nil, } \in\rangle \rangle$

- $\text{head}(\langle x_1, x_2, \ldots, x_n \rangle) = x_n$, $\text{head}(\text{nil}) = \text{nil}$
- $\text{tail}(\langle x_1, x_2, \ldots, x_{n+1} \rangle) = (\langle x_1, x_2, \ldots, x_n \rangle)$, $\text{tail}(\langle y \rangle) = \text{tail}(\text{nil}) = \text{nil}$
- $\text{cons}(\langle x_1, x_2, \ldots, x_n \rangle, y) = (\langle x_1, x_2, \ldots, x_n, y \rangle)$,
- $y \in \langle x_1, x_2, \ldots, x_n \rangle \iff y = x_i$, for some $1 \leq i \leq n$.
- $\langle y_1, y_2, \ldots, y_m \rangle \subseteq \langle x_1, x_2, \ldots, x_n \rangle \iff m \leq n$ and $y_i = x_i$, for all $1 \leq i \leq m$.

Ershov

\(\mathcal{A} = \langle A; P_0^{n_0}, \ldots, P_k^{n_k} \rangle \) is \(\Sigma \)-definable in \(\mathbb{A} \), if there are \(\Sigma \)-formulas (with parameters in \(\mathbb{A} \)) \(S(x) \), \(E^+(x, y) \), \(E^-(x, y) \), \(\Psi_i^+(x_1, \ldots, x_{n_i}) \), \(\Psi_i^-(x_1, \ldots, x_{n_i}) \), \(i = 1, \ldots, k \), such that

1. \(S^* = \{ x \in \mathbb{A} | \mathbb{A} \models S(x) \} \neq \emptyset \),
2. \(E^+(x, y) \) defines congruence \(\eta \) on \(\mathcal{A}^* = \langle S^*; P_1^*, \ldots, P_k^* \rangle \),
 \((P_i^* = \{ < x_1, \ldots, x_{n_i} > | \mathbb{A} \models \Psi_i^+(x_1, \ldots, x_{n_i}) \}) \)
3. sets, defined by \(E^+ \) и \(E^- \), have empty intersection and their union is \((S^*)^2 \),
4. sets, defined by \(\Psi_i^+ \) и \(\Psi_i^- \), have empty intersection and their union is \((S^*)^n \),
5. \(\mathcal{A}^*/\eta \cong \mathcal{A} \).
Morozov

A is Σ-definable in B if i is an embedding from the definition $A \subseteq \Sigma B$, there is a Σ-function σ over B such that $\text{dom}(\sigma) = i[A]$ and $\sigma(i(x)) = \{i(y) \mid y \in x\}$ holds for all $x \in A$.

Basic property:

For each Σ-subset S of $A^n \{\langle i(x_1), \ldots, i(x_n) \rangle \mid \langle x_1, \ldots, x_n \rangle \in S\}$ is a Σ-subset of B.

Puzarenko

A is Σ-definable in B if $i[\Sigma(A^2)] \subseteq \Sigma(B^2)$.
Morozov

\(\mathcal{A} \) is \(\Sigma \)-definable in \(\mathcal{B} \) if \(i \) is an embedding from the definition \(\mathcal{A} \sqsubseteq_{\Sigma} \mathcal{B} \), there is a \(\Sigma \)-function \(\sigma \) over \(\mathcal{B} \) such that \(\text{dom}(\sigma) = i[\mathcal{A}] \) and \(\sigma(i(x)) = \{ i(y) \mid y \in x \} \) holds for all \(x \in \mathcal{A} \).

Basic property:

For each \(\Sigma \)-subset \(S \) of \(\mathcal{A}^n \) \(\{ \langle i(x_1), \ldots, i(x_n) \rangle \mid \langle x_1, \ldots, x_n \rangle \in S \} \) is a \(\Sigma \)-subset of \(\mathcal{B} \).

Puzarenko

\(\mathcal{A} \) is \(\Sigma \)-definable in \(\mathcal{B} \) if \(i[\Sigma(\mathcal{A}^2)] \subseteq \Sigma(\mathcal{B}^2) \).
Theorem

$HF(M)$ is Σ–definable in $HW(M)$ and $HW(M)$ is Σ–definable in $HF(M)$.

- The isomorphism $A^*/\eta \cong A$ in both cases is identical on M.

Σ–definability of superstructures
Corollary

- For every Σ–formula $\Phi(x)$, $x \in M$ there is some $\Psi(y)$ such that $\text{HF}(M) \models \Phi(x) \iff \text{HW}(M) \models \Psi(y)$.
- For every Σ–formula $\Psi(y)$, $y \in M$ there is some $\Phi(x)$ such that $\text{HW}(M) \models \Psi(y) \iff \text{HF}(M) \models \Phi(x)$.

Corollary

$X \subseteq M$ is Σ–definable in $\text{HF}(M)$ iff X is Σ–definable in $\text{HW}(M)$.
List structures (feat. N. Bazhenov)
Motivation

• Moore and Russell 1981: axiomatic theory of lists.
• Goncharov 1983: matrices as lists of lists.
• Goncharov 1986: lists over the elements of a given abstract data type.

Goncharov (1986) proved that the theory of lists over models of a decidable theory is decidable.
List structure

Two sorts of variables: atom and list.

For a finite signature σ, L_σ is a two-sorted first-order language with:

- nil: list,
- $cons$: list \times atom \to list.

List structure over \mathcal{M} is the structure $LS(\mathcal{M})$ of the language L_σ such that

- atom $= |\mathcal{M}|$;
- list $= |\mathcal{M}|^{<\omega}$;
- $nil = \Lambda$;
- $cons(\Lambda, a) = \langle a \rangle$ and $cons(\langle a_0, \ldots a_n \rangle, b) = \langle a_0, \ldots a_n, b \rangle$.
We add to the language L_σ new symbols:

- **head**: list \rightarrow atom \cup list,
- **tail**: list \rightarrow list,
- **\sqsubseteq** list \times list,
- **\in** atom \times list.

Enriched list structure over M ($ELS(M)$):

- $head(\Lambda) = \Lambda$ and $head(\langle a_1, \ldots, a_n \rangle) = a_n$,
- $tail(\Lambda) = tail(\langle a \rangle) = \Lambda$ and
 $tail(\langle a_1, \ldots, a_n, a_{n+1} \rangle) = \langle a_1, \ldots, a_n \rangle$,
- $x \sqsubseteq y$ if a list x is an initial segment of a list y,
- $a \in x$ if a is an element from a list x.
Let \mathcal{M} be an L-structure, α computable ordinal, and $\Psi = \{\psi_n(\bar{x}_n)\}_{n \in \omega}$ is a uniformly computable sequence of computable infinitary formulas in the language $L \cup \{\text{nil}, \text{cons}\}$.

The Ψ-$S(\mathcal{M})$ is a two-sorted structure in the language $L^\Psi := L \cup \{R_{\psi_n}\}_{n \in \omega}$, where R_{ψ_n} are new symbols, such that:

- any symbol from L is treated as applying only to atoms;
- for each $n \in \omega$, R_{ψ_n} is interpreted as $\psi_n[LS(\mathcal{M})]$.
Problem

Suppose that \mathcal{M} is a countable structure, and $S(\mathcal{M})$ is a list-extended structure over \mathcal{M} (say, $LS(\mathcal{M})$ or $ELS(\mathcal{M})$).

- If the first-order theory of \mathcal{M} is decidable, then is it true that the theory of $S(\mathcal{M})$ is also decidable?

Proposition (Goncharov 1986)

If the first-order theory of \mathcal{M} is decidable, then the theory of $LS(\mathcal{M})$ is also decidable.
Decidability results

Problem

Suppose that \mathcal{M} is a countable structure, and $S(\mathcal{M})$ is a list-extended structure over \mathcal{M} (say, $LS(\mathcal{M})$ or $ELS(\mathcal{M})$).

• If the first-order theory of \mathcal{M} is decidable, then is it true that the theory of $S(\mathcal{M})$ is also decidable?

Proposition (Goncharov 1986)

If the first-order theory of \mathcal{M} is decidable, then the theory of $LS(\mathcal{M})$ is also decidable.
Decidability results

Theorem

Let $\mathcal{M} = (\omega; +)$, i.e. \mathcal{M}. Then the theory of $ELS(\mathcal{M})$ is undecidable.

Corollary

The list-extended structure $\{\text{head}, \text{tail}, \sqsubseteq\} - S(\omega, +)$ has no decidable copies.

Corollary

The theory of $\{\text{head}, \text{tail}, \sqsubseteq\} - S(\omega, +)$ is computably isomorphic to $\emptyset(\omega)$.
Decidability results

Theorem

Let A be non-empty, at most countable set. Then the first-order theory of $ELS^2(A)$ is computably isomorphic to the first-order arithmetic.

Corollary

Let \mathcal{M} be an L-structure such that its atomic diagram $D(\mathcal{M})$ is arithmetical, i.e. $D(\mathcal{M}) \leq_T \emptyset^{(n)}$ for some $n \in \omega$. Then the theory of $ELS^2(\mathcal{M})$ is computably isomorphic to the first-order arithmetic.
Thank you!