On the Structure of the Wadge degrees of BQO-valued Borel functions

Takayuki Kihara

Nagoya University, Japan

Joint Work With

Antonio Montalbán (UC Berkeley)

Logic Colloquium, Udine, Italy, July 23, 2018

- The structure of Wadge degrees of Borel subsets of Baire space (equivalently Borel functions *f* : ω^ω → 2) is very simple.
- If we change the domain to non-zero-dimensional spaces (e.g. R), the Wadge degree structure can become very complicated (Ikegami, Schlicht, Tanaka, and others)

- The structure of Wadge degrees of Borel subsets of Baire space (equivalently Borel functions *f* : ω^ω → 2) is very simple.
- If we change the domain to non-zero-dimensional spaces (e.g. R), the Wadge degree structure can become very complicated (Ikegami, Schlicht, Tanaka, and others)
- What happens if we change the codomain?
- (van Engelen, Miller, and Steel 1987) If the codomain Q is better-quasi-ordered (BQO), then the Wadge degrees of Borel functions f : ω^ω → Q is still BQO.

- The structure of Wadge degrees of Borel subsets of Baire space (equivalently Borel functions *f* : ω^ω → 2) is very simple.
- If we change the domain to non-zero-dimensional spaces (e.g. R), the Wadge degree structure can become very complicated (Ikegami, Schlicht, Tanaka, and others)
- What happens if we change the codomain?
- (van Engelen, Miller, and Steel 1987) If the codomain *Q* is better-quasi-ordered (BQO), then the Wadge degrees of Borel functions *f* : ω^ω → *Q* is still BQO.
- (Main Theorem) It is not only BQO, but also has a very simple description.
- Our proof involves various notions from computability theory; however it makes the whole proof extremely simple (compared to previous works on Wadge degrees on Borel sets/functions!)

Key Observation at the First Level

 Δ_2^0 -procedures are represented by effective approximation procedures on well-founded trees (\approx mind-change counters).

- (computable/clopen) Given an input x, effectively decide x ∉ A (indicated by 0) or x ∈ A (indicated by 1).
- (c.e./open) Given an input x, begin with x ∉ A (indicated by 0) and later x can be enumerated into A (indicated by 1).
- (co-c.e./closed) Given an input x, begin with x ∈ A (indicated by 1) and later x can be removed from A (indicated by 0).
- (d-c.e.) Begin with x ∉ A (indicated by 0), later x can be enumerated into A (indicated by 1), and x can be removed from A again (indicated by 0).

Forest-representation of a complete ω -c.e. set:

(ω -c.e.) The representation of " ω -c.e." is a forest consists of linear orders of finite length (a linear order of length n + 1 represents "n-c.e.").

 Given an input x, effectively choose a number n ∈ ω giving a bound of the number of times of mind-changes until deciding x ∈ A.

Tree/Forest-representation of various Δ_2^0 sets:

Remark

- Let *I_α* be the {0, 1}-labeled forest corresponding to the *α*-th level of the Hausdorff difference hierarchy (or equivalently the Ershov hierarchy).
- A set A ⊆ ω^ω is of rank α in the Hausdorff difference hierarchy iff there is a continuous f_A : ω^ω → I_α s.t. A(x) = [label of f_A(x)] for all x, where I_α is topologized by the standard non-Hausdorff order topology.
- A set A ⊆ ω is of rank α in the Ershov hierarchy iff there is a computable f_A : ω → l_α s.t. A(x) = [label of f_A(x)] for all x, where l_α is represented by the standard Sierpiński-like representation.

(Wadge) Let \mathbf{S} be a space, and Q be a preorder.

 f: S → Q is Wadge reducible to g: S → Q (written f ≤_W g) if there is a continuous θ: S → S s.t. f(x) ≤_Q g ∘ θ(x) for all x ∈ S. (Wadge) Let \mathbf{S} be a space, and Q be a preorder.

 f: S → Q is Wadge reducible to g: S → Q (written f ≤_W g) if there is a continuous θ: S → S s.t. f(x) ≤_Q g ∘ θ(x) for all x ∈ S.

Homomorphic Quasi-Ordering (Hertling, Selivanov, and others)

 $\mathcal{A} = (A, \leq_A, c_A), \mathcal{B} = (B, \leq_B, c_A)$: *Q*-labeled preorders (i.e. $c_X : X \to Q$) A morphism $h : \mathcal{A} \to \mathcal{B}$ is a function $h : A \to B$ s.t.

- $x \leq_A y \implies h(x) \leq_B h(y)$.
- $c_A(x) \leq_Q c_B(h(x)).$

Write $\mathcal{A} \leq_h \mathcal{B}$ if there is a morphism $h : \mathcal{A} \to \mathcal{B}$. The quasi-ordering \leq_h is called a homomorphic quasi-order. (Wadge) Let \mathbf{S} be a space, and Q be a preorder.

 f: S → Q is Wadge reducible to g: S → Q (written f ≤_W g) if there is a continuous θ: S → S s.t. f(x) ≤_Q g ∘ θ(x) for all x ∈ S.

Homomorphic Quasi-Ordering (Hertling, Selivanov, and others)

 $\mathcal{A} = (A, \leq_A, c_A), \mathcal{B} = (B, \leq_B, c_A)$: *Q*-labeled preorders (i.e. $c_X : X \to Q$) A morphism $h : \mathcal{A} \to \mathcal{B}$ is a function $h : A \to B$ s.t.

- $x \leq_A y \implies h(x) \leq_B h(y)$.
- $c_A(x) \leq_Q c_B(h(x)).$

Write $\mathcal{A} \leq_h \mathcal{B}$ if there is a morphism $h : \mathcal{A} \to \mathcal{B}$. The quasi-ordering \leq_h is called a homomorphic quasi-order.

Theorem (Selivanov 2007)

If k is a finite discrete order, the Wadge degrees of k-valued Δ_2^0 functions are isomorphic to the quotient homomorphic quasiorder on countable well-founded k-labeled forests.

- Tree(Q): The set of all countable well-founded Q-valued trees.
- \Box Tree(Q): The set of all countable well-founded Q-valued forests.

Selivanov's Theorem

Let *k* be a finite discrete order.

- (Selivanov 2007) The Wadge degrees of k-valued ^{∆0}/₂ functions ≃ the quotient homomorphic quasiorder on [⊔]Tree(k).
- (Selivanov 2017) The Wadge degrees of k-valued ^{∆0}₃ functions ≃ the quotient homomorphic quasiorder on [⊔]Tree(Tree(k)).

- Tree(S): The set of all S-labeled well-founded countable trees.
- ^{LI}Tree(S): The set of all S-labeled well-founded countable forests.

Theorem (extending Duparc's and Selivanov's works)

Let *Q* be a better-quasi-order.

- The Wadge degrees of $\Delta_{2}^{0}(\omega^{\omega} \rightarrow Q) \simeq {}^{\sqcup}\text{Tree}(Q)$.
- The Wadge degrees of $\Delta_3^0(\omega^\omega \to Q) \simeq \Box \operatorname{Tree}(\operatorname{Tree}(Q))$.
- The Wadge degrees of $\Delta_{a}^{0}(\omega^{\omega} \rightarrow Q) \simeq {}^{\sqcup}\text{Tree}(\text{Tree}(\text{Tree}(Q))).$
- The Wadge degrees of $\Delta_{5}^{0}(\omega^{\omega} \rightarrow Q) \simeq {}^{\sqcup}\text{Tree}(\text{Tree}(\text{Tree}(Q)))).$
- and so on...

Hereafter, we will describe a tree and a forest as a term in the following language:

Language $\mathcal{L}(Q)$ for nested Q-labeled trees and forests

- Constant symbols q (for $q \in Q$).
- ② A 2-ary function symbol → (concatenation).
- Solution An ω -ary function symbol \Box (disjoint sum).
- A unary function symbol (·) (labeling).

Example of $\mathcal{L}(2)$ -terms

- **①** The term $0 \rightarrow 1$ represents open sets (c.e. sets).
- 2 The term $1 \rightarrow 0$ represents closed sets (co-c.e. sets).
- ③ The term 0 ⊔ 1 represents clopen sets (computable sets).
- Interm 0→1→0 represents differences of two open sets (d-c.e. sets).
- **5** The term $\langle 0 \rightarrow 1 \rangle$ represents F_{σ} sets (Σ_{2}^{0} sets).

Definition (the class Σ_{T})

For a $\mathcal{L}(Q)$ -term **T**, define the class Σ_T of functions: $\omega^{\omega} \to Q$ as follows

1 Σ_q consists only of the constant function $x \mapsto q$.

3 $f \in \Sigma_{S \to T} \iff$ there is an open set $U \subseteq \omega^{\omega}$ such that

 $f \upharpoonright U$ is in Σ_T and $f \upharpoonright (\omega^{\omega} \setminus U)$ is in Σ_S .

• $f \in \Sigma_{\langle T \rangle} \iff f = g \circ h$ for some $g \in \Sigma_T$ and $h \in \Sigma_0^0$.

Note: For the 3rd condition, without affecting its Wadge degree, a function with closed or open domain can be modified to a total function.

Σ_{0→1} = Σ₁⁰, Σ_{1→0} = Π₁⁰, and Σ_{0⊔1} = Δ₁⁰.
 Σ_{0→1→0} = differences of Σ₁⁰ sets.
 Σ_(0→1) = Σ₂⁰, and Σ_(1→0) = Π₂⁰.
 No term corresponds to Δ₂⁰ (this reflects the fact that there is no Δ₂⁰-complete set; Δ₂⁰ is divided into unbounded ω₁-many Wadge degrees).

- The classes Σ_T's for terms T in the previous language are enough to exhausts all functions of finite Borel ranks.
- How do we extend this notion to infinite Borel ranks?

- The classes Σ_T's for terms T in the previous language are enough to exhausts all functions of finite Borel ranks.
- How do we extend this notion to infinite Borel ranks?
- It seems natural to define $\operatorname{Tree}^{\xi^{?}}(Q) := \operatorname{Tree}(\bigcup_{\eta < \xi} \operatorname{Tree}^{\eta^{?}}(Q)).$
- It is straightforward to extend the def. of Σ_T to all $T \in \text{Tree}^{\xi^2}(Q)$.

- The classes Σ_T's for terms T in the previous language are enough to exhausts all functions of finite Borel ranks.
- How do we extend this notion to infinite Borel ranks?
- It seems natural to define $\operatorname{Tree}^{\xi^{?}}(Q) := \operatorname{Tree}(\bigcup_{\eta < \xi} \operatorname{Tree}^{\eta^{?}}(Q)).$
- It is straightforward to extend the def. of Σ_T to all $T \in \text{Tree}^{\xi^2}(Q)$.
- But... for $T \in {}^{\sqcup}\text{Tree}^{\alpha?}(Q)$, every Σ_T -function is Δ_{ω}^0 -measurable!

- The classes Σ_T's for terms T in the previous language are enough to exhausts all functions of finite Borel ranks.
- How do we extend this notion to infinite Borel ranks?
- It seems natural to define $\operatorname{Tree}^{\xi^{?}}(Q) := \operatorname{Tree}(\bigcup_{\eta < \xi} \operatorname{Tree}^{\eta^{?}}(Q)).$
- It is straightforward to extend the def. of Σ_T to all $T \in \text{Tree}^{\xi^2}(Q)$.
- But... for $T \in {}^{\sqcup}\text{Tree}^{\alpha^{?}}(Q)$, every Σ_{T} -function is Δ_{ω}^{0} -measurable!

• ...Why?

- The Wadge rank of a $\sum_{n=0}^{\infty} c_{n}$ -complete set is $\omega_{1} \uparrow \uparrow n$.
- The height of the Wadge degrees of Borel sets of finite rank is the first fixed point of the exp. of base ω₁, i.e., ε_{ω1+1} = sup_{n≤ω} ω₁ ↑↑ n.
- What is the height of the Wadge degrees of Δ_{ω}^{0} sets?
- It is the ω_1 -st fixed point of the exp. of base ω_1 , i.e., $\varepsilon_{\omega_1+\omega_1}$.
- (Tree^{α ?}(2))_{$\alpha < \omega_1$} may only describe the hierarchy between ε_{ω_1+1} and $\varepsilon_{\omega_1+\omega_1}$...?

- \Box Tree^{ω}(*Q*): the set of all terms in the previous language.
- Tree^{ω}(*Q*): the set of all terms whose outmost symbol is not \sqcup .
- Previous Idea: Tree(Tree^{ω}(Q)) may describe the rank $\omega + 1$.

- \Box Tree^{ω}(*Q*): the set of all terms in the previous language.
- Tree^{ω}(*Q*): the set of all terms whose outmost symbol is not \sqcup .
- Previous Idea: Tree(Tree^{ω}(Q)) may describe the rank $\omega + 1$.
- Correct Idea: Tree^{ω}(Tree(Q)) describes the rank $\omega + 1$.

- \Box Tree^{ω}(*Q*): the set of all terms in the previous language.
- Tree^{ω}(Q): the set of all terms whose outmost symbol is not \sqcup .
- Previous Idea: Tree(Tree^{ω}(Q)) may describe the rank $\omega + 1$.
- Correct Idea: Tree^{ω}(Tree(Q)) describes the rank $\omega + 1$.
- To deal with this, we have to distinguish two labeling functions for inner trees Tree(Q) and the outer tree Tree^ω.
- Given an ordering \mathcal{P} , define the new ordering $\langle \mathcal{P} \rangle^{\omega}$ as follows:
 - $\langle \mathcal{P} \rangle^{\omega} = \{ \langle p \rangle^{\omega} : p \in \mathcal{P} \}.$
 - $\langle p \rangle^{\omega} \leq \langle q \rangle^{\omega} \iff p \leq_{\mathcal{P}} q.$
- Obviously $\langle \mathcal{P} \rangle^{\omega}$ is isomorphic to \mathcal{P} .
- To avoid a notational confusion, instead of Tree^ω(Tree(Q)), we will consider Tree^{ω+1}(Q) := Tree^ω((Tree(Q))^ω).
- Continue, e.g. $\operatorname{Tree}^{\omega \cdot 2+6}(Q) := \operatorname{Tree}^{\omega}(\langle \operatorname{Tree}^{6}(Q) \rangle^{\omega}) \rangle^{\omega})$, which is isomorphic to $\operatorname{Tree}^{\omega}(\operatorname{Tree}^{6}(Q)))$.

We now give the correct description of trees for infinite ranks:

Language \mathcal{L}_{α} for nested *Q*-labeled trees and forests

- Constant symbols q (for $q \in Q$).
- ② A 2-ary function symbol → (concatenation).
- Solution An ω -ary function symbol \Box (disjoint sum).
- A unary function symbol $\langle \cdot \rangle^{\omega^{\beta}}$ for every $\beta < \alpha$ (ω^{β} -labeling).
 - $\Box \operatorname{Tree}^{\omega^{\alpha}}(Q)$: The set of all \mathcal{L}_{α} -terms.
 - Tree^{ω^{α}}(*Q*): The set of all \mathcal{L}_{α} -terms whose outmost symbol is not \sqcup .
 - Every ξ < ω₁ is uniquely decomposed as ξ = ω^α + β.
 Then, inductively define Tree^ξ(Q) := Tree^{ω^a} ((Tree^β(Q))^{ω^a}).

• Tree^{$$\omega_1$$}(Q) = $\bigcup_{\xi < \omega_1}$ Tree ^{ξ} (Q).

•
$$\Box$$
Tree ^{ω_1} (Q) = $\bigcup_{\xi < \omega_1} \Box$ Tree ^{ξ} (Q).

Definition (the class Σ_T)

For a term **T**, define the class Σ_T of functions: $\omega^{\omega} \rightarrow Q$ as follows:

- **1** Σ_q consists only of the constant function $x \mapsto q$.
- **③** *f* ∈ $\Sigma_{S^{\rightarrow}T}$ ⇐⇒ there is an open set **U** ⊆ ω^{ω} such that

 $f \upharpoonright U$ is in Σ_T and $f \upharpoonright (\omega^{\omega} \setminus U)$ is in Σ_S .

A function $f : \omega^{\omega} \to Q$ is Σ_T -complete if $f \in \Sigma_T$, and every Σ_T -function $g : \omega^{\omega} \to Q$ is Wadge reducible to f.

Lemma

For any $T \in \text{Tree}^{\omega_1}(Q)$, there is a Σ_T -complete function.

To construct Σ_{τ} -complete functions, we will use complete Σ_{ξ}^{0} -measurable function on Baire space.

A function $f : \omega^{\omega} \to Q$ is Σ_T -complete if $f \in \Sigma_T$, and every Σ_T -function $g : \omega^{\omega} \to Q$ is Wadge reducible to f.

Lemma

For any $T \in \text{Tree}^{\omega_1}(Q)$, there is a Σ_T -complete function.

To construct Σ_{τ} -complete functions, we will use complete Σ_{ξ}^{0} -measurable function on Baire space.

- A Γ-function g: ω^ω → ω^ω is complete if for any Γ-function h there is a continuous θ s.t. h = g ∘ θ.
- There is no complete total Σ₂⁰-measurable function:ω^ω → ω^ω.
 (Otherwise, we would have a greatest Δ₂⁰ Wadge degree)
- However, a complete partial ∑₂⁰-measurable function can exist. E.g., the partial limit function Lim which, given ⟨x(n, s)⟩_{n,s}, returns the maximal initial segment of ⟨lim_s x(n, s)⟩_n.
- Similarly, a complete partial \sum_{ε}^{0} -measurable function exists.

Definition of Σ_{T} -complete functions

- $\Omega_q : \mathbf{x} \mapsto \mathbf{q}$, a constant function.
- $\Omega_{\sqcup_i T_i}(\mathbf{n} \cdot \mathbf{x}) = \Omega_{T_n}(\mathbf{x}).$
- $\Omega_{(S)} \rightarrow F$ is a function, which given $x \in \omega^{\omega}$,
 - until seeing the "mind-change" symbol in x, simulate $\Omega_{(s)}$.
 - If we see the "mind-change" symbol in x, then erase all previous outputs, and now start to simulate Ω_F.
- $\Omega_{\langle T \rangle \omega^{\alpha}} = \Omega_T \circ \operatorname{Lim}_{\omega^{\alpha}}$

where $\operatorname{Lim}_{\omega^{\alpha}}$ is a complete partial $\sum_{1+\omega^{\alpha}}^{0}$ -measurable function.

Lemma

 $Ω_T$ is Σ_T-complete for any T ∈ Tree^{ω1}(Q).

We define a quasi-order ≤ on terms, which is shown to be isomorphic to the Wadge degrees of finite Borel rank.

Definition of **⊴**

We inductively define a quasi-order ≤ on terms as follows:

$$p \leq q \iff p \leq_Q q,$$
$$\langle U \rangle^{\omega^{\alpha}} \leq \langle V \rangle^{\omega^{\beta}} \iff \begin{cases} U \leq V & \text{if } \alpha = \beta, \\ \langle U \rangle^{\omega^{\alpha}} \leq V & \text{if } \alpha > \beta, \\ U \leq \langle V \rangle^{\omega^{\alpha}} & \text{if } \alpha < \beta. \end{cases}$$

and if **S** and **T** are of the form $\langle U \rangle^{\omega^{\alpha}} \rightarrow \bigsqcup_{i} S_{i}$ and $\langle V \rangle^{\omega^{\beta}} \rightarrow \bigsqcup_{j} T_{j}$, then

$$S \trianglelefteq T \iff \begin{cases} (\forall i) \ S_i \trianglelefteq T & \text{if } \langle U \rangle^{\omega^{\alpha}} \trianglelefteq \langle V \rangle^{\omega^{\beta}}, \\ (\exists j) \ S \trianglelefteq T_j & \text{if } \langle U \rangle^{\omega^{\alpha}} \not \trianglelefteq \langle V \rangle^{\omega^{\beta}}. \end{cases}$$

Main Lemma 1 ($T \mapsto \Omega_T$ is an embedding)

 $S \trianglelefteq T \iff \Omega_S \leq_W \Omega_T.$

Main Lemma 2 ($T \mapsto \Omega_T$ is a surjective)

Every $\Delta^0_{1+\xi}$ -measurable function $f : \omega^{\omega} \to Q$ is Wadge equivalent to Ω_T for some $T \in {}^{\sqcup}\text{Tree}^{\xi}(Q)$.

The key notion in our proofs is the Turing jump operator.

The Turing jump **TJ** : $\omega^{\omega} \rightarrow \omega^{\omega}$ has the following properties:

- The Turing jump **TJ** is an right-complete Σ_2^0 -computable function: For all Σ_2^0 -comp. $g: \omega^{\omega} \to \omega^{\omega}$, there is a comp. θ s.t. $g = \theta \circ TJ$.
- The Turing jump *TJ* is an injection whose image is Π⁰₂.
- The left inverse *TJ*⁻¹ is a computable map with a Π⁰₂ domain.
 (For computability, note that *X*' computes *X* in a uniform manner!)

The key notion in our proofs is the Turing jump operator.

The Turing jump **TJ** : $\omega^{\omega} \rightarrow \omega^{\omega}$ has the following properties:

- The Turing jump *TJ* is an right-complete Σ_2^0 -computable function: For all Σ_2^0 -comp. $g: \omega^{\omega} \to \omega^{\omega}$, there is a comp. θ s.t. $g = \theta \circ TJ$.
- The Turing jump *TJ* is an injection whose image is Π⁰₂.
- The left inverse *TJ*⁻¹ is a computable map with a Π⁰₂ domain.
 (For computability, note that *X*' computes *X* in a uniform manner!)

Marcone-Montalbán (2011), in "*The Veblen functions for computability theorists*", introduced the notion of the *Turing jump via true stages*.

The MM Turing jump \mathcal{J} is better than the traditional Turing jump TJ:

- The MM Turing jump \mathcal{J} is an right-complete Σ_2^0 -comp. function.
- The MM Turing jump $\boldsymbol{\mathcal{J}}$ is an injection whose image is closed.
- The left inverse \mathcal{J}^{-1} is a computable map with a closed domain.

 \mathcal{J}^{Z} : The MM Turing jump relative to Z. Since the domain \mathcal{J}^{Z} is closed, we can think of it as a total function.

The Jump Inversion Operator *

For a function $f : \omega^{\omega} \to Q$, define $f^{*Z} = f \circ (\mathcal{J}^Z)^{-1}$.

 \mathcal{J}^{Z} : The MM Turing jump relative to Z. Since the domain \mathcal{J}^{Z} is closed, we can think of it as a total function.

The Jump Inversion Operator 🛩

For a function $f : \omega^{\omega} \to Q$, define $f^{*Z} = f \circ (\mathcal{J}^Z)^{-1}$.

- $X \leq_T Y \implies f^{\star X} \geq_W f^{\star Y}$.
- Since the Turing degrees form a upper semilattice, and Wadge degrees of *Q*-valued func. are well-founded, there must exist *Z* s.t.

• Define $f^* = f^{*Z}$ for such a Z.

Key Lemma (Jump Inversion)

$(h \circ \operatorname{Lim})^* \equiv_W h$. In particular, $\Omega^*_{\langle T \rangle} \equiv_W \Omega_T$.

- Our jump inversion theorem follows from (the uniform version of) the Friedberg jump inversion theorem.
- Our above result seems related to Brattka's work on "A Galois connection between Turing jumps and limits."

Key Lemma (Jump Inversion)

$(h \circ \operatorname{Lim})^* \equiv_W h$. In particular, $\Omega^*_{\langle T \rangle} \equiv_W \Omega_T$.

- Our jump inversion theorem follows from (the uniform version of) the Friedberg jump inversion theorem.
- Our above result seems related to Brattka's work on "A Galois connection between Turing jumps and limits."

Definition (Louveau and Saint-Raymond 1990)

A function $f: \omega^{\omega} \rightarrow Q$ is self-dual if

 \exists continuous θ s.t. for all $x \in \omega^{\omega}$, $f \circ \theta(x) \not\leq_Q f(x)$.

Key Lemma (Jump-Inversion-Cancellation)

Assume f^* or g^* is non-self-dual. Then $f^* \leq_W g^* \implies f \leq_W g$.

- This follows from the (Borel) determinacy.
- The argument is almost the same as Duparc (2001), "Wadge hierarchy and Veblen hierarchy Part I: Borel sets of finite rank."

 $\mathcal{J}^{\omega^{\alpha},Z}$: The ω^{α} -th MM Turing jump operator relative to Z. The left-inverse $(\mathcal{J}^{\omega^{\alpha},Z})^{-1}$ is also continuous with closed domain. Define $f^{\star\omega^{\alpha}}$ as one realizing the least Wadge deg. among $f \circ (\mathcal{J}^{\omega^{\alpha},Z})^{-1}$.

Transfinite Jump Inversion Theorem

$$(h \circ \operatorname{Lim}_{\omega^{\alpha}})^{\star \omega^{\alpha}} \equiv_{W} h.$$
 In particular, $\Omega_{\langle T \rangle^{\omega^{\alpha}}}^{\star \omega^{\alpha}} \equiv_{W} \Omega_{T}.$

 This follows from (the uniform version of) the transfinite jump inversion theorem.

• This again follows from the (Borel) determinacy.

A function $f : \omega^{\omega} \rightarrow Q$ is α -stable if

• f is initializable, i.e., $(\exists g \equiv_W f) (\forall \sigma \in \omega^{<\omega}) g \upharpoonright [\sigma] \equiv_W g$.

•
$$f^{*\omega^{\beta}} \equiv_W f$$
 for any $\beta < \alpha$.

Key Technical Lemma on α -Stability

- $\Omega_{\langle T \rangle^{\omega^{\alpha}}}$ is α -stable.
- 2 If **f** is α -stable, then $f^{*\omega^{\alpha}}$ is non-self-dual.
 - (1) again uses the (transfinite) jump inversion theorem.
 - (2) for α = 0 just follows from a simple finite extension method as in Duparc (2001).
 - (2) for $\alpha > 0$ involves some inverse limit construction.

Main Lemma 1

$$S \trianglelefteq T \iff \Omega_S \leq_W \Omega_T$$

Main Lemma 2

Every $\Delta^0_{\widetilde{1}+\xi}$ -measurable function $f: \omega^{\omega} \to Q$ is Wadge equivalent to Ω_T for some $T \in {}^{\sqcup}\mathrm{Tree}^{\xi}(Q)$.

Proof of Main Lemma 1 ($\mathbf{S} \leq \mathbf{T} \iff \Omega_{\mathbf{S}} \leq_{\mathbf{W}} \Omega_{\mathbf{T}}$):

- If *T* ∈ [⊥]Tree(*Q*) is constructed from ⊥, →, the proof is the same as the classical Δ⁰₂ case.
- We only show that $\langle U \rangle^{\omega^{\alpha}} \trianglelefteq \langle V \rangle^{\omega^{\beta}} \iff \Omega_{\langle U \rangle^{\omega^{\alpha}}} \le_{W} \Omega_{\langle V \rangle^{\omega^{\beta}}}.$
- If $\alpha = \beta$, by definition and Induction Hypothesis: $\langle U \rangle^{\omega^{\alpha}} \trianglelefteq \langle V \rangle^{\omega^{\beta}} \iff U \trianglelefteq V \iff \Omega_U \le_W \Omega_V.$
- By the jump inversion: $\Omega_{\langle U \rangle^{\omega^{\alpha}}} \leq_{W} \Omega_{\langle V \rangle^{\omega^{\alpha}}} \implies \Omega_{U} \equiv_{W} \Omega_{\langle U \rangle^{\omega^{\alpha}}}^{\star \omega^{\alpha}} \leq_{W} \Omega_{\langle V \rangle^{\omega^{\alpha}}}^{\star \omega^{\alpha}} \equiv_{W} \Omega_{V}.$

• Since $\Omega_{\langle U \rangle^{\omega^{\alpha}}}$ is α -stable, $\Omega_{\langle U \rangle^{\omega^{\alpha}}}^{*\omega^{\alpha}}$ is non-self-dual. Thus, by the jump inversion and the jump-inversion-cancellation, $\Omega_{U} \leq_{W} \Omega_{V} \implies \Omega_{\langle U \rangle^{\omega^{\alpha}}}^{*\omega^{\alpha}} \leq_{W} \Omega_{\langle V \rangle^{\omega^{\alpha}}}^{*\omega^{\alpha}} \implies \Omega_{\langle U \rangle^{\omega^{\alpha}}} \leq_{W} \Omega_{\langle V \rangle^{\omega^{\alpha}}}$.

- If $\alpha > \beta$, by definition and Induction Hypothesis: $\langle U \rangle^{\omega^{\alpha}} \trianglelefteq \langle V \rangle^{\omega^{\beta}} \iff \langle U \rangle^{\omega^{\alpha}} \trianglelefteq V \iff \Omega_{\langle U \rangle^{\omega^{\alpha}}} \le_{W} \Omega_{V}.$
- By the α -stability of $\Omega_{\langle U \rangle^{\omega^{\alpha}}}$ and by the jump inversion: $\Omega_{\langle U \rangle^{\omega^{\alpha}}} \leq_{W} \Omega_{\langle V \rangle^{\omega^{\alpha}}} \implies \Omega_{\langle U \rangle^{\omega^{\alpha}}} \equiv_{W} \Omega_{\langle U \rangle^{\omega^{\alpha}}}^{\star \omega^{\beta}} \leq_{W} \Omega_{\langle V \rangle^{\omega^{\beta}}}^{\star \omega^{\beta}} \equiv_{W} \Omega_{V}.$

• The converse direction is the same as before.

Proof of Main Lemma 2 (($\forall f \text{ Borel}$)($\exists T$) $f \equiv_W \Omega_T$):

- If *f* is self-dual, then it follows from the standard argument.
- If *f* is non-self-dual, and not 0-stable, then consider $F(f) = \{X \in \omega^{\omega} : (\exists \sigma \prec X) f \upharpoonright [\sigma] \equiv_W f\}$, and:
 - The "quotient" Q_f is defined by the initializable part $f \upharpoonright F(f)$.
 - The "reminder" R_f is defined by $f \upharpoonright (\omega^{\omega} \setminus F(f))$.

Then Q_f , $R_f <_W f$ and $f \equiv_W Q_f \stackrel{\rightarrow}{\rightarrow} R_f$. Thus, by Induction Hypothesis, $f \equiv_W \Omega_S \stackrel{\rightarrow}{\rightarrow} \Omega_T$ for some **S** and **T**.

- Assume that *f* is α -stable, but not $(\alpha + 1)$ -stable.
- Since f is not $(\alpha + 1)$ -stable, we have $f^{+\omega^{\alpha}} <_{W} f$.
- Since *f* is α -stable, $f^{*\omega^{\alpha}}$ is non-self-dual.
- By Induction Hypothesis, $f^{*\omega^{\alpha}} \equiv_{W} \Omega_{T}$ for some tree **T**.
- By the jump-inversion, we get $f^{+\omega^{\alpha}} \equiv_{W} \Omega_{T} \equiv_{W} \Omega_{T}^{+\omega^{\alpha}}$.
- By the jump-inversion-cancellation, we conclude $f \equiv_W \Omega_{\langle T \rangle^{\omega^{\alpha}}}$.

Four key tools:

- (Jump inversion) $\Omega^{\star\omega^{\alpha}}_{\langle T \rangle^{\omega^{\alpha}}} \equiv_{W} \Omega_{T}.$
- (Jump-inversion-cancellation) Assume $f^{\star \omega^{\alpha}}$ or $g^{\star \omega^{\alpha}}$ is non-self-dual. Then $f^{\star \omega^{\alpha}} \leq_{W} g^{\star \omega^{\alpha}} \implies f \leq_{W} g$.
- (Stability) $\Omega_{\langle T \rangle^{\omega^{\alpha}}}$ is α -stable.
- (Stable-to-non-self-dual) If f is α -stable, then $f^{*\omega^{\alpha}}$ is non-self-dual.

Proof of The Jump Inversion Lemma $\Omega^{\star}_{\langle T \rangle} \equiv_W \Omega_T$

Proof of The Jump Inversion Lemma $\Omega_{T}^* \equiv_W \Omega_T$

- (Jump Inversion Theorem) $(\forall C, X)(\exists Y) (Y \oplus C)' \equiv_T X \oplus C'$.
- $X \mapsto Y$ is uniform, that is, $\exists C'$ -computable ψ s.t.

 $(\forall X, C) \quad (\psi(X) \oplus C)' \equiv_T X \oplus C'.$

• The Turing equivalence is also uniform:

- \geq_T is witnessed by a computable $\theta_0 : (\psi(X) \oplus C)' \mapsto X$.
- \leq_T is witnessed by a C'-computable $\theta_1 : X \mapsto (\psi(X) \oplus C)'$.
- That is, $\theta_0 \circ \mathcal{J}^c \circ \psi = \text{id}$ and $\theta_1 = \mathcal{J}^c \circ \psi$.

Proof of The Jump Inversion Lemma $\Omega_{T}^{*} \equiv_{W} \Omega_{T}$

- $\hat{\omega} = \omega \cup \{\text{pass}\}; (X)^{\mathsf{p}} \text{ is the result of removing all pass'es from } X.$
- (Duparc) \mathcal{A} is conciliatory if $\exists \tilde{\mathcal{A}}$ s.t. $\tilde{\mathcal{A}}((X)^{\mathsf{p}}) = \mathcal{A}(X)$ for all X.
- $\mathcal{A} := \Omega_T$ is conciliatory for any $T \in \text{Tree}^{\omega_1}(Q)$.
- Let *I*: ŵ^ω → ω^ω is a computable homeomorphism obtained from a computable bijection between ŵ and ω.

Proof of The Jump Inversion Lemma $\Omega_{T}^{*} \equiv_{W} \Omega_{T}$

- $\mathcal{U} := \operatorname{Lim}$ is a complete conciliatory $\sum_{j=2}^{0}$ -measurable function.
- (Completeness) $\forall f \in \sum_{2}^{0} \exists \text{ cont. } \Phi \forall X (f(X))^{p} = (\mathcal{U} \circ \Phi(X))^{p}$.
- Indeed, since I⁻¹ ∘ θ₀ ∘ J^C is Σ^{0,C}₂-computable, there is a C-computable Φ₂ s.t. (I⁻¹ ∘ θ₀ ∘ J^C(X))^p = (U ∘ Φ₂(X))^p.
- That is, $(\cdot)^{\mathsf{p}} \circ l^{-1} \circ \theta_0 \circ \mathcal{J}^{\mathsf{C}} = (\cdot)^{\mathsf{p}} \circ \mathcal{U} \circ \Phi_2(X)).$

Proof of The Jump Inversion Lemma $\Omega_{(\tau)}^* \equiv_W \Omega_{\tau}$

$$\begin{array}{c} \mathcal{J}^{C}[\omega^{\omega}] - - - \stackrel{\theta_{2}}{=} - \rightarrow \mathcal{J}^{C}[\omega^{\omega}] \\ \uparrow \mathcal{J}^{C} & \mathcal{J}^{-1,C} \\ \downarrow \\ \omega^{\omega} - \stackrel{\Phi_{2}}{=} \rightarrow \hat{\omega}^{\omega} \xleftarrow{I^{-1}} \omega^{\omega} \end{array}$$

Recall: *J^C* is an right-complete Σ₂^{0,C}-computable function: For all Σ₂^{0,C}-comp. *g* : ω^ω → ω^ω, ∃ computable θ s.t. *g* = θ ∘ *J^C*. *J^C* ∘ *I* ∘ Φ₂ : ω^ω → ω^ω is Σ₂^{0,C}-computable.

• Thus, there is a computable θ_2 s.t. $\mathcal{J}^C \circ I \circ \Phi_2 = \theta_2 \circ \mathcal{J}^C$.

Proof of The Jump Inversion Lemma $\Omega^{\star}_{\langle T \rangle} \equiv_W \Omega_T$

The previous argument shows that the above diagram is commutative:

$$\Omega_{\mathsf{T}} = \mathcal{A} \leq_{\mathsf{W}} (\mathcal{A} \circ \mathcal{U})^{\star} = \Omega_{\langle \mathsf{T} \rangle}^{\star} \text{ via } \theta_2 \circ \theta_1 \circ \mathsf{I}.$$

Proof of The *α***-Stability Lemma**

Proof of the "stable-to-non-self-dual" lemma is more complicated.

Main Theorem

Let *Q* be BQO. The following structures are isomorphic:

- The Wadge degrees of Q-valued $\Delta^0_{\Xi_{1+\ell}}$ -measurable functions.
- 2 The many-one-on-a-cone degrees of *Q*-valued (≡_T, ≡_m)-degree-invariant ^{∆0}_{21+ℓ}-functions.
- The quotient order of $(\text{Tree}^{\xi}(Q), \trianglelefteq)$.
- T. Kihara and A. Montalbán, The uniform Martin's conjecture for many-one degrees, to appear in Transactions of the American Mathematical Society.
- T. Kihara and A. Montalbán, On the structure of the Wadge degrees of BQO-valued Borel functions, to appear in Transactions of the American Mathematical Society.